ConceptClang Prototype Update

Larisse Voufo

Open Systems Lab
Comp. Sci. Program
SOIC, IU-Bloomington, USA

IWR - TU Dresden: 03/16/11

lp INDIANA U!

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 1/24

Outline

@ Concepts: Terminology and Historical Perspective
@ Origin
@ In Relation to Generic Programming
@ Concepts-Oriented Programming

Q Concepts: The Implementation Design Philosophies
@ The Concepts Proposals
@ Deriving the Right Proposal

© ConceptClang
@ Implementation Philosophy
@ The Prototype: Update

I'IJ INDIANA UNIVERSITY

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 2/24

Origin
Concepts: Not a New Idea

@ Tecton: D. Kapur, D. Musser & A. Stepanov. [1980s]

o Alex Stepanov & Paul McJones. "Elements Of Programming". [2009]
o Concept: groups types in terms of shared structures and properties

@ Austern: Generic Programming and the STL [1998]

o Documentation is Concepts-Oriented.

lp 1
Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 3/24

Origin
Concepts: Not a New Idea

@ Tecton: D. Kapur, D. Musser & A. Stepanov. [1980s]

o Alex Stepanov & Paul McJones. "Elements Of Programming". [2009]
o Concept: groups types in terms of shared structures and properties
o Programmer’s awareness of mathematical properties

@ ==> Better programming discipline
@ ==> More code reusability and safety.

@ Austern: Generic Programming and the STL [1998]

o Documentation is Concepts-Oriented.

lp INDIANA UNIVERSITY

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 3/24

Origin
Concepts: Not a New Idea

Tecton: D. Kapur, D. Musser & A. Stepanov. [1980s]

o Alex Stepanov & Paul McJones. "Elements Of Programming". [2009]

o Concept: groups types in terms of shared structures and properties
o Programmer’s awareness of mathematical properties

@ ==> Better programming discipline
@ ==> More code reusability and safety.
Austern: Generic Programming and the STL [1998]

o Documentation is Concepts-Oriented.

J. Siek & A. Lumsdaine.
e Boost Concepts Checking Library. [2000]

o Peter Gottschling
o Property-Aware Programming
o Facilitating the “exploitation” of the idea.

In Practice: STL, BGL, MTL4, G Language (J. Siek's thesis), Adobe Open
Systems, etc...

I'IJ 1
Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 3/24

@i
A Comparative Study of Support for Concepts in
PLs

C++ SML OCaml Haskell Eiffel Java C# Cecil

Multi-type concepts - [] o [o} O o} -
Multiple constraints - - -] ot L] L]]
Associated type access [] [] = [- - - -
Constraints on assoc. types -] L] L] - - - L]
Retroactive modeling - L] []] Q G - L]
Type aliases] [] [] @] o] O @]
Separate compilation O] - []] L]] -
Implicit arg. deduction [] O [] [] O L] - -

“Using the multi-parameter type class extension to Haskell (Peyton Jones et al., 1987).
*Using the functional dependencies extension to Haskell (Jones, 2000).
"Planned language additions.

Table 1: The level of support for important properties for generic programming in
the evaluated languages. A black circle indicates full support, a white circle
indicates poor support, and a half-filled circle indicates partial support. The rating
of “" in the Cr+ column indicates that Cr+ does not explicitly support the
feature, but one can still program as if the feature were supported due to the
permissiveness of C++ templates.

@ "“An extended Comparative Study of Language Support for Generic Programrrifln%'r’).IAM S
[2007]. Garcia et. al

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 4 /24

Concepts: Terminology and Historical Perspective [olFl}

A Comparative Study of Support for Concepts in
PLs

C++ SML OCaml Haskell Eiffel Java C# Cecil

Multi-type concepts - [] C [O O o] -
Multiple constraints - - - [] [ol} L] L] L]
Associated type access [] L] - [M - - - -
Constraints on assoc. types -] [] [] - - - []
Retroactive modeling - [] [] [] O O - L]
Type aliases [] [] [] O C o] o
Separate compilation o]] - []] [] [] -
Implicit arg. deduction Q [] [] Q L] - -
*Tlaing the multi-narameter tvne class extension to Haskell (Pevton Tones et al 0 1997

o C++: (almost) full support, but indirectly.

| pians xmvensTy
@ "“An extended Comparative Study of Language Support for Generic Programming’'.

Larisse Voufo (Open Systems Lab Comp. S ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 4 /24

Concepts: Terminology and Historical Perspective [olFl}

A Comparative Study of Support for Concepts in
PLs

C++ SML OCaml Haskell Eiffel Java C# Cecil

Multi-type concepts - [] C [O O o] -
Multiple constraints - - - [] [ol} L] L] L]
Associated type access [] L] - [M - - - -
Constraints on assoc. types - [] [] [] - - - []
Retroactive modeling - [] [] [] O O - L]
Type aliases [] [] [] O C o] o
Separate compilation o] [] - [] [] [] L] -
Implicit arg. deduction Q [] [] Q L] - -
*Tlaing the multi-narameter tvne class extension to Haskell (Pevton Tones et al 0 1997
o Concepts == Generic Programming 7

| pians xmvensTy
@ "“An extended Comparative Study of Language Support for Generic Programming’'.

Larisse Voufo (Open Systems Lab Comp. S ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 4 /24

InfRelationlcolGeneric]Bogsamming
Generic Programming: Differs by Perspective
In a few words...

@ Safe Code Reusability
@ Multiplicative functionality for additive work

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 5/24

InfRelationlcolGeneric]Bogsamming
Generic Programming: Differs by Perspective
In a few words...

@ Safe Code Reusability

@ Multiplicative functionality for additive work

For Concepts:
Genericity by ...

@ Value — function abstraction

Type — (parametric or adhoc) polymorphism

Function — functions as values

°
@ Structure — requirements and operations on types
o Property — properties on type

°

Stage — metaprogramming
@ Shape — datatype-generic

— "Datatype Generic Programming". Gibbons [3]

v

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 5/24

(Ei e = @) (Ui
Programming w/ Concepts

o Definition:

o Capture the common interface
o Capture the common semantics
o lIgnore irrelevant details

lp INDIANA UNIVERSITY

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 6 /24

Concepts: Terminology and Historical Perspective OIS IERO T Y Walee-Ie T T IS

Programming w/ Concepts

o Definition:

o Capture the common |nterfac.e o Requirements:
o Capture the common semantics
o lIgnore irrelevant details

Larisse Voufo (Open Systems Lab Comp. Sci. §

Concept: The Ingredients

e associated types
e associated requirements
e associated functions

@ Modeling implementations (types)
o Generic algorithms (templates)

@ Applications (template
instantiations)

lp INDIANA UNIVERSITY

ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 6 /24

(Ei e = @) (Ui
Programming w/ Concepts

o Definition: Concept: The Ingredients
o Capture the common interface
o Capture the common semantics
o lIgnore irrelevant details

@ Requirements:

e associated types
e associated requirements

o Advantages _ e associated functions
o Better safety, expressiveness, . .
usability @ Modeling implementations (types)

@ Separate type checking: o Generic algorithms (templates)

generic algorithm + arguments L.
o better error messages @ Applications (template

o low barrier to entry instantiations)

lp INDIANA UNIVERSITY

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 6 /24

Concepts: Terminology and Historical Perspective OIS IERO T Y Walee-Ie T T IS

Generic Programming in C++: Templates

Generic Algorithm

Definition

template<typename InputIterator,
typename T,
typename BinaryOperation>
T accumulate(InputIterator first,
Inputlterator last, T init,
BinaryOperation binary_op) {
for (; first != last; ++first)
init = binary_op(init, *first);
return init;

}

accumulate: traverse a range and
accumulate its elements

@ an iterator for traversal
@ a binary operation to accumulate

lp INDIANA UNIVERSITY

-
Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 7/24

(Concepte.Oviented |BIOgFamIing
Generic Programming in C++: Templates

Generic Algorithm

accumulate: traverse a range and

Definition accumulate its elements
template<typename InputIterator, @ an iterator for traversal
typename T, @ a binary operation to accumulate

typename BinaryOperation>
T accumulate(InputIterator first,
Inputlterator last, T init,
BinaryOperation binary_op) {
for (; first != last; ++first)
init = binary_op(init, *first);
return init;

}

Use

vector<int> v;
int i = accumulate(v.begin(),
v.end(), O,
plus<int>()); [p INDIANA UNIVERSITY
v

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 7/24

Concepts: Terminology and Historical Perspective OIS IERO T Y Walee-Ie T T IS

Generic Programming in C++: Templates

Generic Algorithm

Definition

template<typename InputIterator,
typename T,
typename BinaryOperation>
T accumulate(InputIterator first,
Inputlterator last, T init,
BinaryOperation binary_op) {
for (; first != last; ++first)
init = binary_op(init, *first);
return init;

}

Use

vector<int> v;

int i = accumulate(v.begin(),
v.end(), O,
plus<int>());

v

Larisse Voufo (Open Systems Lab Comp. S ConceptClang Prototype Update

Concrete Algorithm

Instantiation

@ == Generate concrete code

e at compile time,
o if it type-checks.

o At time of first use

lp INDIANA UNIVERSITY

IWR - TU Dresden: 03/16/11

7/24

(Concepte.Oviented |BIOgFamIing
Generic Programming in C++: Templates

Problem: Error Capture and Diagnosis...

std: :vector<void*> v;
std::accumulate(v.begin(), v.end(),

0, std::plus<int>());

/usr/include/c++/4.3/bits/stl_numeric.h: In function ¢_Tp std::accumulate(_InputIterator,
_InputIterator, _Tp, _BinaryOperation) [with _Inputlterator = __gnu_cxx::__normal_iterator<voidx

std::vector<void*, std::allocator<void*> > >, _Tp = int, _BinaryOperation = std::plus<int>]’:
test.cpp:7: instantiated from here

/usr/include/c++/4.3/bits/stl_numeric.h:117: error: invalid conversion from ‘void*’ to ‘int?

/usr/include/c++/4.3/bits/stl_numeric.h:117: error: initializing argument 2 of
¢_Tp std::plus<_Tp>::operator() (const _Tp&, const _Tp&) const [with _Tp = int]’

IR

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 8 /24

(Concepte.Oviented |BIOgFamIing
Generic Programming in C++: Templates

Problem: Error Capture and Diagnosis...

Type checking: not separate

@ generic algorithm and arguments, both at instantiation time.
@ compile error messages: hard to understand
o library code leaking to user space...

lp INDIANA U!

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 8 /24

(Concepte.Oviented |BIOgFamIing
Generic Programming in C++: Templates

Problem: Error Capture and Diagnosis...

std::vector<int> vi;
std::sort(vi.begin(), vi.end(),
std: :not_equal_to<int>());

Error Not Detected!

INDIANA UNIVERSITY

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 8 /24

(Concepte.Oviented |BIOgFamIing
Generic Programming in C++: Templates

Problem: Error Capture and Diagnosis...

Type checking: not separate

@ generic algorithm and arguments, both at instantiation time.
@ compile error messages: hard to understand
o library code leaking to user space...

WORSE:

@ Silent compilation!
@ Uncaught semantical errors.

lp INDIANA UNIVERSITY

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 8 /24

(Concepte.Oviented |BIOgFamIing
Generic Programming in C++: Templates

Problem: Error Capture and Diagnosis...

Further...

@ w/ the indirect “support” for concepts

lp INDIANA UNIVERSITY

Larisse Voufo (Open Systems Lab Comp. S

ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 8 /24

Concepts: Terminology and Historical Perspective OIS IERO T Y Walee-Ie T T IS

Generic Programming in C++: Templates
Problem: w/ the Indirect Support for Concepts

The Indirect Support
@ Naming and Documentation
o Language “tricks™
o type traits, archetypes, tag dispatching, etc...
o cf. Boost Concept Checking Library [6]

lp INDIANA UNIV]

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 9/24

(Concepte.Oviented |BIOgFamIing
Generic Programming in C++: Templates

Problem: w/ the Indirect Support for Concepts

The Indirect Support
@ Naming and Documentation
o Language “tricks™
o type traits, archetypes, tag dispatching, etc...
o cf. Boost Concept Checking Library [6]

Problems
o Language “tricks”: too complex, error-prone, and limited

o awckward design

e poor maintainability

@ unnecessary runtime checks
o painfully verbose code

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 9/24

(Concepte.Oviented |BIOgFamIing
Generic Programming in C++: Templates

Problems Recap

Error Diagnosis ...
@ Type checking: not separate
o generic algorithm and arguments, both at instantiation time.

@ compile error messages: hard to understand
@ library code leaking to user space...

Error Capture ...

o Silent compilation!
@ Uncaught semantical errors.

Indirect Support for concept ...

o Language “tricks": too complex, error-prone, and limited

o awckward design

e poor maintainability

@ unnecessary runtime checks
o

. RSITY
painfully verbose code e

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 10 / 24

(Concepte.Oviented |BIOgFamIing
Generic Programming in C++: Templates

Problems Recap

Solution:

o Add (Full) Support for Concepts!

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 10 / 24

[Concepr=;Orented[Rroe iy
C++ Templates w/ Concepts

Error Capture and Diagnosis

Ideal Error Message Currently

The given types do not match the concept

std::vector<void*> v;
BinaryOperation<std: :plus<int>, void*> ’

std::accumulate(v.begin(), v.end(),
0, std::plus<int>());

/usr/include/c++/4.3/bits/stl_numeric.h: In fun
_InputlIterator, _Tp, _BinaryOperation) [with _I
std::vector<void#*, std::allocator<void*> > >, |
test.cpp:7: instantiated from here
/usr/include/c++/4.3/bits/stl_numeric.h:117: ex
/usr/include/c++/4.3/bits/stl_numeric.h:117: eq
¢_Tp std::plus<_Tp>::operator() (const _Tp&, coy

v

IR

Larisse Voufo (Open Systems Lab Comp. Sci ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 11 / 24

[Concepr=;Orented[Rroe iy
C++ Templates w/ Concepts

Error Capture and Diagnosis

Ideal Error Message Currently

The given types do not match the concept
StrictWeakOrdering<std::not_equal_to<int>,

std::vector<int> vi;
int> std::sort(vi.begin(), vi.end(),
i std::not_equal_to<int>());

Error Not Detected!

INDIANA UNIVERSITY

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 11 / 24

[Concepr=;Orented[Rroe iy
C++ Templates w/ Concepts

Error Capture and Diagnosis

The Generic Algorithm

template<typename II,
typename T,
typename BO>
requires InputIterator<II, T> &&
BinaryOperation<BO, T> &&
StrictWeakOrdering<B0O, T>
T accumulate(II first, II last, T init, BO binary_op) {
for (; first != last; ++first)
init = binary_op(init, *first);
return init;

IR

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 11 / 24

[Concepr=;Orented[Rroe iy
Concepts: The Terminology

Constrained Template

template< typename T >
requires (C<T>)
void foo(T x, t a) {
f(x, a); 1148

}
Larisse Voufo (Open Systems Lab Comp. Sci ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 12 / 24

[Concepr=;Orented[Rroe iy
Concepts: The Terminology

Definition

concept C< typename T > {
// axiom t = ...
typename t;
requires R<T,t>;
void £(T x, t a);

Constrained Template

template< typename T >
requires (C<T>)
void foo(T x, t a) {
f(x, a); lp INDIANA UNIVERSITY

}
Larisse Voufo (Open Systems Lab Comp. S ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 12 / 24

[Concepr=;Orented[Rroe iy
Concepts: The Terminology

Definition

concept C< typename T > {
// axiom t = ...
typename t;
requires R<T,t>;
void £(T x, t a);

Model: Concept map

concept_map R<int,int> {

}

concept_map C<int> {
typedef int t;
void f(int x, int a) {... }

o ql INDIANA UNIVERSITY
Constrained Template [
Larisse Voufo (Open Systems Lab Comp. S ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 12 / 24

[Concepr=;Orented[Rroe iy
Concepts: The Terminology

Definition

concept C< typename T > {
// axiom t = ...
typename t;
requires R<T,t>;
void £(T x, t a);

Model: Concept map Template
@ Automatic Dispatching

template< typename T >
requires (R<T,int>)
concept_map C<T> {
typedef int t;
void f(T x, int a) {... }

lp INDIANA UNIVERSITY

Constrained Template

Larisse Voufo (Open Systems Lab Comp. S

ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 12 / 24

[Concepr=;Orented[Rroe iy
Concepts: The Terminology

Refinement

concept C< typename T > : PC<T> {
// axiom t = ...
typename t;
requires R<T,t>;
void f(T x, t a);
-}

Model: Concept map

concept_map C<int> {
typedef int t;
void f(int x, int a) {... }

Constrained Template

template< typename T >
requires (C<T>)

void foo(T x, t a) {
f(x, a); lp INDIANA UNIVERSITY

}

Larisse Voufo (Open Systems Lab Comp. S ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 12 / 24

[Concepr=;Orented[Rroe iy
Concepts: The Terminology

Definition

concept C< typename T > : PC<T> {
// axiom t = ...
typename t;
requires R<T,t>;
void f(T x, t a);
-}

Model: Concept map

concept_map C<int> {
typedef int t;
void f(int x, int a) {... }

Constrained Template

template< typename T >
requires (C<T>)
void foo(T x, t a) {
f(x, a);
}

Checkpoints

@ Concept Definition
o Non-dependent check

@ Concept Map Specification
o Requirements met?

© Generic Algorithm Definition

o Valid concepts?
o Concept Coverage:
@ Check body against constraint.
@ Generic Algorithm Use.
o Constraints Check:
@ Type matches concept?

o Pull-in implementation

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 12 / 24

Concepts: Terminology and Historical Perspective OIS IERO T Y Walee-Ie T T IS

Concepts: The Terminology

Definition
@ associated types
@ associated requirements
@ associated functions
@ Refinement
o Concept extends requirements of
another

Model: Concept map
@ How a given type meets a

concept’s requirements
o (Automatic) Concept Dispatching

v

Constrained Template
@ Expressing the constraints on type

parameters.

Larisse Voufo (Open Systems Lab Comp. Sci. §

ConceptClang Prototype Update

Checkpoints

@ Concept Definition
o Non-dependent check

@ Concept Map Specification
o Requirements met?

© Generic Algorithm Definition

o Valid concepts?
o Concept Coverage:
@ Check body against constraint.
@ Generic Algorithm Use.
o Constraints Check:
@ Type matches concept?

o Pull-in implementation

lll INDIANA UNIVERSITY

IWR - TU Dresden: 03/16/11 12 / 24

Concepts: Terminology and Historical Perspective OIS IERO T Y Walee-Ie T T IS
I z i

o Concept: Definition and Terminology

o “Constraints” on types

o A type of genericity.
@ in C++: Please Support Concepts, Directly!
@ Advantages:

o Better safety, expressiveness, usability

@ Separate type checking: generic algorithm + arguments
@ better error messages
@ low barrier to entry

e in C++: W/o hurting existing features...

lp INDIANA UNIVERSITY

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 13 /24

Concepts: Terminology and Historical Perspective OIS IERO T Y Walee-Ie T T IS
I z i

o Concept: Definition and Terminology

o “Constraints” on types

o A type of genericity.
@ in C++: Please Support Concepts, Directly!
@ Advantages:

o Better safety, expressiveness, usability

@ Separate type checking: generic algorithm + arguments
@ better error messages
@ low barrier to entry

e in C++: W/o hurting existing features...

But... How exactly?)

lp INDIANA UNIVERSITY

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 13 / 24

Concepts: The Implementation Design Philosophies The Concepts Proposals

Several Implementation Design Philosophies
... And Why Concepts are not in C++0x.

@ 2005: The “Indiana” Proposal: “Explicit” Concepts
o "“Concept for C++" [2, 4]
o Doug Gregor, Jeremy Siek, Andrew Lumsdaine, Ronald Garcia, Jeremiah

Willcock, Jaakko Jarvi, etc...
o ConceptGCC: (Author: Doug Gregor)

o First (and only) prototype compiler, proof-of-concept
@ 2005: The “Texas" Proposal: “Implicit” Concepts
e “A Concept Design” [8, 1]
o Bjarne Stroustrup, Gabriel Dos Reis, etc...

(Ref lp INDIANA UNIVERSITY
http://cpp-next.com/archive/2009/08/what-happened-in-frankfurty)
Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 14 / 24

http://cpp-next.com/archive/2009/08/what-happened-in-frankfurt/

Concepts: The Implementation Design Philosophies The Concepts Proposals

Several Implementation Design Philosophies
... And Why Concepts are not in C++0x.

@ 2005: The “Indiana” Proposal: “Explicit” Concepts
o "“Concept for C++" [2, 4]
o Doug Gregor, Jeremy Siek, Andrew Lumsdaine, Ronald Garcia, Jeremiah

Willcock, Jaakko Jarvi, etc...
o ConceptGCC: (Author: Doug Gregor)

o First (and only) prototype compiler, proof-of-concept
2005: The “Texas" Proposal: “Implicit” Concepts
e “A Concept Design” [8, 1]
e Bjarne Stroustrup, Gabriel Dos Reis, etc...
@ 2006 + : The "Compromise” Proposal(s)
o “Concepts: linguistic support for generic programming in C++" [5]
o All

@ - 2009: Several Issues Raised...
o “Simplifying the Use of Concepts’, Bjarne Stroustrup [7]
o Philosophies: still diverging
o Implementation experience (w/ ConceptGCC)
o Final Proposal: “Implicit” Concepts & “Explicit” Derivation
(Ref: Qs oxrvERsTY

http://cpp-next.com/archive/2009/08/what-happened-in-frankfurty)
ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 14 / 24

http://cpp-next.com/archive/2009/08/what-happened-in-frankfurt/

Concepts: The Implementation Design Philosophies The Concepts Proposals

Several Implementation Design Philosophies
... And Why Concepts are not in C++0x.

@ 2005: The “Indiana” Proposal: “Explicit” Concepts
o "“Concept for C++" [2, 4]
o Doug Gregor, Jeremy Siek, Andrew Lumsdaine, Ronald Garcia, Jeremiah

Willcock, Jaakko Jarvi, etc...
o ConceptGCC: (Author: Doug Gregor)

o First (and only) prototype compiler, proof-of-concept
2005: The “Texas" Proposal: “Implicit” Concepts
e “A Concept Design” [8, 1]
e Bjarne Stroustrup, Gabriel Dos Reis, etc...
@ 2006 + : The "Compromise” Proposal(s)
o “Concepts: linguistic support for generic programming in C++" [5]
o All
- 2009: Several Issues Raised...
o “Simplifying the Use of Concepts’, Bjarne Stroustrup [7]
o Philosophies: still diverging
o Implementation experience (w/ ConceptGCC)
o Final Proposal: “Implicit” Concepts & “Explicit” Derivation
o Jul-2009: C++ Committee Meeting: Frankfurt, Germany
o Voted OUT!
o "“Not ready, untried, too risky' — paraphrasing Dr. Bjarne Stroustrup.
(Ref: Qs oxrvERsTY
http://cpp-next.com/archive/2009/08/what-happened-in-frankfurty)
ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 14 / 24

http://cpp-next.com/archive/2009/08/what-happened-in-frankfurt/

Concepts: The Implementation Design Philosophies The Concepts Proposals

The “Texas” Proposal (in a nutshell)
Implicit Match for Concepts

“Implicit” Concepts Checkpoints

Definition:

@ Concept Map Specification
o Not needed

Model: Concept Map

@ Not needed — Matching Implicitly

@ Generic Algorithm Use.

l o Match if valid expression found.
o Structural conformance

@ Accidental conformance

lp N
Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 15 / 24

The Concepts Proposals
The “Texas” Proposal (in a nutshell)

Implicit Match for Concepts

“Implicit” Concepts
Definition:
o Use Patterns — for associated
functions
o Example: *x++
e Expressions of this form should
be valid.

o For: Less verbose, more efficient,
more general,
directly mappeable from current
documentations.

e Against: not so efficient (7),
precision and compatibility
(=> unintentional matches)

v

Larisse Voufo (Open Systems Lab Comp. Sci. §

ConceptClang Prototype Update

Checkpoints

@ Concept Map Specification
o Not needed

@ Generic Algorithm Use.

o Match if valid expression found.
o Structural conformance

@ Accidental conformance

lll INDIANA UNIVERSITY

IWR - TU Dresden: 03/16/11 15 / 24

Concepts: The Implementation Design Philosophies The Concepts Proposals

The “Indiana” Proposal (in a nutshell)
Explicit Match for Concepts

“Explicit”’ concepts Checkpoints

@ Concept Definition
Definition e Ok.

@ Concept Map Specification
o Ok

© Generic Algorithm Definition

D o Ok.

| @ Generic Algorithm Use.

o Match if concept map found.

@ MUST Specify — for each matching o Named Conformance
data type o verbose, restrictive, difficult to
teach and learn...

o Accidental conformance not
necessarily bad, if it does occur

...

Model: Concept Map

v

P noana UNIVERSILY

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 16 / 24

Concepts: The Implementation Design Philosophies The Concepts Proposals

The “Indiana” Proposal (in a nutshell)
Explicit Match for Concepts

“Explicit”’ concepts Checkpoints
@ Concept Definition
Definition o Ok.
o Pseudo-signatures — for @ Concept Map Specification
associated functions o Ok
© Example: T operator++() © Generic Algorithm Definition
o Reusing existing features: C++ o Ok

hecker... . .
type checker @ Generic Algorithm Use.

o Match if concept map found.

/ e Named Conformance
l o verbose, restrictive, difficult to
Model: Concept Map teach and learn...
@ MUST Specify — for each matching ® Accidental conformance not
data type necessarily bad, if it does occur
y ...

v

P noana UNIVERSILY

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 16 / 24

The Concepts Proposals
The “Compromise” Proposal(s) (in a nutshell)

Allow both options — “Explicit” by Default

The design: Pre-Frankfurt draft

Definition
@ Both:
o “Explicit” by default
o “auto” keyword — for Implicit
o Pseudo-signatures — for
associated functions

Model: Concept Map

@ Dependent on qualifier on concept
definition.

Larisse Voufo (Open Systems Lab Comp. Sci. §

ConceptClang Prototype Update

Checkpoints

@ Concept Definition
o Ok.

@ Concept Map Specification
o Ok

© Generic Algorithm Definition
o Ok.

@ Generic Algorithm Use.

o Match based on qualifier on
concept definition.

lp INDIANA UNIVERSITY

IWR - TU Dresden: 03/16/11 17 / 24

MR o
The “Nail to the Coffin” (in a nutshell)

Not Both. Only “Implicit”’, w/ “Explicit” Refinement ?

Language Philosophy

o Flexibility and Performance: (Abstractions over) Implementation details
Should not be hurt by additions of features

Easy navigation into new features

Existing codes should take advantage

Learning and teaching: Lower barriers to entry.

lp INDI.
Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 18 / 24

MR o
The “Nail to the Coffin” (in a nutshell)

Not Both. Only “Implicit”’, w/ “Explicit” Refinement ?

Analysis

@ Several issues raised...

o Debugging: What if | need to debug in the middle of an implementation?
o Subsets: What if | cannot change the implementation of a concept?
o Automatic selection of refined implementation: not always favorable.

NIVERSITY

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 18 / 24

MR o
The “Nail to the Coffin” (in a nutshell)

Not Both. Only “Implicit”’, w/ “Explicit” Refinement ?

Analysis

@ Several issues raised...

o Debugging: What if | need to debug in the middle of an implementation?

o Subsets: What if | cannot change the implementation of a concept?
o Automatic selection of refined implementation: not always favorable.

auto concept ContiguousIterator<typename Iter> : RandomAccessIterator<Iter> {

requires (LvalueReference<reference> && LvalueReference<subscript_reference>)
}
template<ContiguousIterator InIter, ContiguousIterator OutIter>

requires (SameType<Inlter::value_type, Outlter::value_type> &&

POD<InIter::value_type>)
OutIter copy(InIter first, InIter last, OutIter out) {

if (first != last)

memmove (&*out, *&first, (last - first) * sizeof (InlIter::value_type));
return out + (last - first);

o Syntactically similar, Semantically different concepts:
Contiguouslterator and RandomAccesslterator
o Call to copy() ==> Implementation for Contiguouslterator.

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 18 / 24

MR o
The “Nail to the Coffin” (in a nutshell)

Not Both. Only “Implicit”’, w/ “Explicit” Refinement ?

Analysis

@ Several issues raised...

o Debugging: What if | need to debug in the middle of an implementation?
o Subsets: What if | cannot change the implementation of a concept?
o Automatic selection of refined implementation: not always favorable.

@ Solution: “Explicit” Refinement

concept CB<typename T> : explicit CA<T> {

}
o “If type matches CA, do not select ‘up” to CB’s implementation”.
@ A derivation is not (also) a specialization.

lp INDIANA UNIVERSITY

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 18 / 24

MR o
The “Nail to the Coffin” (in a nutshell)

Not Both. Only “Implicit”’, w/ “Explicit” Refinement ?

Analysis

@ Several issues raised...

o Debugging: What if | need to debug in the middle of an implementation?
o Subsets: What if | cannot change the implementation of a concept?
o Automatic selection of refined implementation: not always favorable.

@ Solution: “Explicit’ Refinement — Example

concept ContiguousIterator<typename Iter> : explicit
RandomAccessIterator<Iter> {... }
concept ForwardIterator<class T> : explicit InputIterator<T> {... }
o "Tf type matches CA, do not select ‘'up” to CB’s implementation™.
@ A derivation is not (also) a specialization.

lp INDIANA UNIVERSITY

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 18 / 24

MR o
The “Nail to the Coffin” (in a nutshell)

Not Both. Only “Implicit”’, w/ “Explicit” Refinement ?

Analysis

@ Several issues raised...

o Debugging: What if | need to debug in the middle of an implementation?
o Subsets: What if | cannot change the implementation of a concept?
o Automatic selection of refined implementation: not always favorable.

@ Solution: “Explicit” Refinement

concept ContiguousIterator<typename Iter> : explicit
RandomAccessIterator<Iter> {... }
concept ForwardIterator<class T> : explicit InputIterator<T> {... }

//Loss of optimization?
// Consider a int* a ForwardIterator, even if it is a InputIterator ...

concept_map ForwardIterator<int*> {}

T

o "Tf type matches CA, do not select 'up” to CB’s implementation™.
@ A derivation is not (also) a specialization.

lp INDIANA UNIVERSITY

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 18 / 24

Concepts: The Implementation Design Philosophies The Concepts Proposals

The “Nail to the Coffin” (in a nutshell)

Not Both. Only “Implicit”’, w/ “Explicit” Refinement ?

Analysis

@ Several issues raised...

o Key ideas:
o Easier to build “explicit” concept maps from “implicit” ones, than the other way
around.
o Default of “explicit” ==> A proliferation of concept maps — and a mindset that
goes with them.
o Default of “implicit” ==> to the need for (far fewer) “explicit” refinements.

lp INDIANA UNIVERSITY

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 18 / 24

Concepts: The Implementation Design Philosophies The Concepts Proposals

The “Nail to the Coffin” (in a nutshell)

Not Both. Only “Implicit”’, w/ “Explicit” Refinement ?

Analysis

@ Several issues raised...

o Key ideas:
o Easier to build “explicit” concept maps from “implicit” ones, than the other way
around.
o Default of “explicit” ==> A proliferation of concept maps — and a mindset that
goes with them.
o Default of “implicit” ==> to the need for (far fewer) “explicit” refinements.

Conclusion: “Implicit” Concepts + “Explicit” Refinements.

@ Save people from writing redundant concept maps,
@ Teach people to directly address the semantic problems, and
@ not to unnecessarily fear automatic/implicit concepts.

lp INDIANA U!

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 18 / 24

erivingithelRight]Rroposa]
Coming Up w/ the Right Philosophy

The Fall of Concepts in C++40x
“Not ready, untried, too risky’

No disagreement on whether to add the feature.
Disagreements on how to add the feature.

Incomplete understanding of implications from each proposal.

Most of the analysis is abstract and unverified

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 19 / 24

erivingithelRight]Rroposa]
Coming Up w/ the Right Philosophy

The Fall of Concepts in C++40x
“Not ready, untried, too risky’ J

No disagreement on whether to add the feature.
Disagreements on how to add the feature.
Incomplete understanding of implications from each proposal.

Most of the analysis is abstract and unverified

Demand for a concrete analysis!
o Only working prototype: ConceptGCC — insufficient

@ Poor compile-time performance
o Lack of some advanced features (e.g., scoped concept maps, associated templates)

o Need production-quality implementation
@ to validate the full concepts-based standard library

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 19 / 24

erivingithelRight]Rroposa]
Coming Up w/ the Right Philosophy

The Fall of Concepts in C++40x
“Not ready, untried, too risky’ J

No disagreement on whether to add the feature.
Disagreements on how to add the feature.
Incomplete understanding of implications from each proposal.

Most of the analysis is abstract and unverified

Demand for a concrete analysis!
o Only working prototype: ConceptGCC — insufficient

@ Poor compile-time performance
o Lack of some advanced features (e.g., scoped concept maps, associated templates)

o Need production-quality implementation
@ to validate the full concepts-based standard library

Enters ME! ... }

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 19 / 24

Implementation[Bhiosephy
My Work: ConceptClang

The goals

© Implement Concepts in Clang

o ConceptGCC in a different platform
o Support all Philosophies
o Follow the pre-Frankfurt standard as closely as possible.

@ Analyze issues raised — concretely

© Determine a right proposal.

lp INDIANA UNIVERSITY

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 20/ 24

Implementation[Bhiosephy
My Work: ConceptClang

The goals

© Implement Concepts in Clang

ConceptGCC in a different platform

Support all Philosophies

Follow the pre-Frankfurt standard as closely as possible.
As first-class entities of the language.

@ Lots of previous work reuse existing features
@ Yet, still no Concept feature.
o Why not try something different ?

@ Analyze issues raised — concretely

© Determine a right proposal.

lp INDIANA UNIVERSITY

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 20/ 24

[LIILITGEN "M The Prototype: Update

ConceptClang: Update

December, 2010
Trivial Concepts, Maps, and Generic Algorithms

o Empty bodies

March, 2011 — Now

© Features Implemented and Tested

Concept definitions (explicit)
Concept maps: definitions and
instantiation.

Associated functions
Concept coverage and lookup
Concept refinement
Associated requirements
late_ check

Implicit concepts

Explicit refinement
Constrained templates:
constraints-check

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update

IWR - TU Dresden: 03/16/11

21/ 24

[LIILITGEN "M The Prototype: Update

ConceptClang: Update

December, 2010
Trivial Concepts, Maps, and Generic Algorithms

o Empty bodies

March, 2011 — Now

© Features Implemented and Tested

°
o

®© © ©6 6 ¢ © © o

Concept definitions (explicit) Probably Buggy

Concept maps: definitions and o Scoped Concepts
instantiation. e Associated function template
Associated functions o Concept map templates
Concept coverage and lookup o Associated types
Concept refinement

Associated requirements

late_ check

Implicit concepts

Explicit refinement

Constrained templates:

constraints-check

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update

@ Features Implemented, but

IWR - TU Dresden: 03/16/11

21/ 24

[LIILITGEN "M The Prototype: Update

ConceptClang: Update

December, 2010

Trivial Concepts, Maps, and Generic Algorithms

o Empty bodies

March, 2011 — Now

© Features Implemented and Tested
o Concept definitions (explicit)
o Concept maps: definitions and

instantiation.

Associated functions

Concept coverage and lookup

Concept refinement

Associated requirements

late_ check

Implicit concepts

Explicit refinement

Constrained templates:

constraints-check

Larisse Voufo (Open Systems Lab Comp. Sci. §

®© © ©6 6 ¢ © © o

ConceptClang Prototype Update

@ Features Implemented, but
Probably Buggy
o Scoped Concepts
e Associated function template
o Concept map templates
o Associated types

© In the Horizon:
© Most Pressing Features

o Concept map templates

@ Associated types

o Concept-based overloading
@ Eventually

@ Use-Patterns
IWR - TU Dresden: 03/16/11 21/ 24

ilhelRototypelUpdate
Use-Case Examples

© Prototype Released: Alpha mode.
o http://zalewski.indefero.net/p/clang/
o Download
e Run Tests
o Play!
@ Foresight
e Mini-BGL
o stdlib

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update

lp INDIANA UNIVERSITY

IWR - TU Dresden: 03/16/11

22 /24

http://zalewski.indefero.net/p/clang/

The Prototype: Update
Thank You!

[3
[

Larisse Voufo (Open Systems Lab Comp. S

Gabriel Dos Reis and Bjarne Stroustrup.
Specifying c++ concepts.
SIGPLAN Not., 41:295-308, January 2006.

Jeremy Siek Douglas, Douglas Gregor, Ronald
Garcia, Jeremiah Willcock, Jaakko Jarvi, and
Andrew Lumsdaine.

Concepts for c++0x.

Technical Report N1758=05-0018, ISO/IEC JTC
1, Information Technology, Subcommittee SC 22,
Programming Language C++, january 2005.

Jeremy Gibbons.

Datatype-generic programming.

In Spring School on Datatype-Generic
Programming, volume 4719 of Lecture Notes in
Computer Science. Springer-Verlag.

Douglas Gregor, Jeremy Siek Douglas, Jeremiah
Willcock, Jaakko Jarvi, Ronald Garcia, and
Andrew Lumsdaine.

Concepts for c++0x revision 1.

Technical Report N1849=05-0109, ISO/IEC JTC
1, Information Technology, Subcommittee SC 22,
Programming Language C++, august 2005.

ConceptClang Prototype Update

@ Douglas Gregor, Jaakko Jarvi, Jeremy Siek,

Bjarne Stroustrup, Gabriel Dos Reis, and Andrew
Lumsdaine.

Concepts: linguistic support for generic
programming in c++.

SIGPLAN Not., 41:291-310, October 2006.

Jeremy Siek and Andrew Lumsdaine.

Concept checking: Binding parametric
polymorphism in c++.

In IN FIRST WORKSHOP ON C++ TEMPLATE
PROGRAMMING, 2000.

Bjarne Stroustrup.

Simplifying the use of concepts.

Technical Report N2906=09-0096, ISO/IEC JTC
1, Information Technology, Subcommittee SC 22,
Programming Language C++4-, august 2009.

Bjarne Stroustrup and Gabriel Dos Reis.

A concept design (rev. 1).

Technical Report N1782=05-0042, ISO/IEC JTC
1, Information Technology, Subcommittee SC 22,
Programming Language C++, april 2005.

lp INDIANA UNIVERSITY

IWR - TU Dresden: 03/16/11 23 /24

Lo
The “Nail to the Coffin” (in a nutshell)

Not Both. Only “Implicit”’, w/ “Explicit” Refinement ?

Language Philosophy

o Flexibility and Performance: (Abstractions over) Implementation details
Should not be hurt by additions of features

Easy navigation into new features

Existing codes should take advantage

Learning and teaching: Lower barriers to entry.

lp INDI.
Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 24 /24

Lo
The “Nail to the Coffin” (in a nutshell)

Not Both. Only “Implicit”’, w/ “Explicit” Refinement ?

Debug Example
@ What if | need to debug in the middle of an implementation?

template<typename T>
requires (ST<T>)
void cf(T& t) {
cerr«"Storing"«t; // 777
store(t);

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 24 /24

Lo
The “Nail to the Coffin” (in a nutshell)

Not Both. Only “Implicit”’, w/ “Explicit” Refinement ?

Debug Example

@ What if | need to debug in the middle of an implementation?
@ Solutionl: "Print only if you can”

struct debuglog {
debuglog(ostream& os) : os(os) {}
ostream& os;

// Identity adds no constraints, but causes this to be a constrained template:

template <typename T> requires Identity<T>
debuglog operator«(T const&) const {os«"<unprintable>"; return *this; }

template <typename T> requires Identity<T> && OutputStreamable<T>
debuglog operator«(T const& x) const {os«x; return *this; }
};
o Postpones the execution of the error message to runtime.
@ requires some cleverness

4

<A UNIVERSITY

Larisse Voufo (Open Systems Lab Col Sci

ConceptClang Prototype Update IWR - TU Dresden: 03/16/11

24 /24

Lo
The “Nail to the Coffin” (in a nutshell)

Not Both. Only “Implicit”’, w/ “Explicit” Refinement ?

Debug Example
@ What if | need to debug in the middle of an implementation?

@ Solution 2: Hack: late check
o No concept-check: on some area of implementation
o Violates the spirit of interface based on checking
o Interface change

lll INDIANA UNIVERSITY

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 24 /24

Lo
The “Nail to the Coffin” (in a nutshell)

Not Both. Only “Implicit”’, w/ “Explicit” Refinement ?

Subsets

@ What if | cannot change the implementation of a concept?

concept AB<typename T> {
void a(T&);
void b(T&);
};
concept A<typename T> {
void a(T&);
}
//0bviously, every type that’s an AB is also an A, so:

template<typename T>

requires (A<T>) void £(T);
template<typename T>

requires (AB<T>) void (T t);
void h(X x) // X is a type for which a(x) is valid

£(x); // ambiguous
}

« NIVERSITY

Larisse Voufo (Open Systems Lab Comp. S ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 24 /24

Lo
The “Nail to the Coffin” (in a nutshell)

Not Both. Only “Implicit”’, w/ “Explicit” Refinement ?

Subsets

o What if | cannot change the implementation of a concept?

concept AB<typename T> {
void a(T&);
void b(T&);
};
concept A<typename T> {
void a(T&);
};
//0bviously, every type that’s an AB is also an A, so:

template<typename T>

requires (A<T>) void f£(T);
template<typename T>

requires (AB<T>) void £(T t);
void h(X x) // X is a type for which a(x) is valid

£(x); // ambiguous

}
e A Solution:

template<typename T> requires (AB<T>) concept_map A<T> {}

o Inside h? Local concept map not allowed.

NDIANA UNIVERSITY

Larisse Voufo (Open Systems Lab Col Sci

ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 24 /24

Lo
The “Nail to the Coffin” (in a nutshell)

Not Both. Only “Implicit”’, w/ “Explicit” Refinement ?

Subsets

@ What if | cannot change the implementation of a concept?

concept AB<typename T> {
void a(T&);
void b(T&);
};
concept A<typename T> {
void a(T&);
}
//0bviously, every type that’s an AB is also an A, so:

template<typename T>

requires (A<T>) void £(T);
template<typename T>

requires (AB<T>) void (T t);
void h(X x) // X is a type for which a(x) is valid

£(x); // ambiguous
}

o A Solution: — Impossible in current wording
o Inside h? Local concept map not allowed.
o Outside h? Leaking implementation details + Impossible (?)

y

Larisse Voufo (Open Systems Lab Comp. S ConceptClang Prototype Update IWR - TU Dresden: 03/16/11

NIVERSITY

24 /24

Lo
The “Nail to the Coffin” (in a nutshell)

Not Both. Only “Implicit”’, w/ “Explicit” Refinement ?

When implicit concepts are insufficient

@ Automatic selection of refined implementation is not always favorable.

auto concept ContiguousIterator<typename Iter> : RandomAccessIterator<Iter> {

requires (LvalueReference<reference> && LvalueReference<subscript_reference>)
i
template<ContiguousIterator InIter, ContiguousIterator OutIter>

requires (SameType<InIter::value_type, OutIter::value_type> &&

POD<InIter::value_type>)
OutIter copy(InIter first, InIter last, OutIter out) {

if (first != last)

memmove (&*out, *&first, (last - first) * sizeof(InIter::value_type));
return out + (last - first);

o Syntactically similar, Semantically different concepts:
Contiguouslterator and RandomAccesslterator
e Call to copy() ==> Implementation for Contiguouslterator.

« NA UNIVERSITY

Larisse Voufo (Open Systems Lab Col Sci

ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 24 /24

Lo
The “Nail to the Coffin” (in a nutshell)

Not Both. Only “Implicit”’, w/ “Explicit” Refinement ?

When implicit concepts are insufficient

@ Automatic selection of refined implementation is not always favorable.
@ Generalization:

© Programmer A defines concept CA.

@ Programmer B defines concept CB derived from CA.

@ syntactically very similar, yet semantically different

© Programmer U manages to use a type T somehow meant to be CA as a CB.

o A does not know about B or U.
e B knows about CB and CA

@ may not be able to modify CA.
e U may only know about CA and CB,
@ and would rather know as little as possible.

© What can B do to protect U ?
@ What can language designers do to “remind B to protect U"

@ and to help U if B forgets?

b lll INDIANA UNIVERSITY

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 24 /24

Tl FrEnes Uk
The “Nail to the Coffin” (in a nutshell)
Not Both. Only “Implicit”’, w/ “Explicit” Refinement ?
When implicit concepts are insufficient
o Automatic selection of refined implementation is not always favorable.

@ Solution: “Explicit” Refinement

concept CB<typename T> : explicit CA<T> {

}

o “If type matches CA, do not select ‘up’ to CB’s implementation”.
o A derivation is not (also) a specialization.

lp INDIANA UNIVERSITY

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 24 /24

Lo
The “Nail to the Coffin” (in a nutshell)

Not Both. Only “Implicit”’, w/ “Explicit” Refinement ?

When implicit concepts are insufficient

o Automatic selection of refined implementation is not always favorable.

@ Solution: “Explicit” Refinement — Example

concept ContiguousIterator<typename Iter> : explicit RandomAccessIterator<Iter> {... }
concept ForwardIterator<class T> : explicit InputIterator<T> {... }

o “If type matches CA, do not select ‘up’ to CB’s implementation”.
o A derivation is not (also) a specialization.

lp INDIANA UNIVERSITY

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 24 /24

Lo
The “Nail to the Coffin” (in a nutshell)

Not Both. Only “Implicit”’, w/ “Explicit” Refinement ?

When implicit concepts are insufficient

o Automatic selection of refined implementation is not always favorable.

@ Solution: “Explicit” Refinement

concept ContiguousIterator<typename Iter> : explicit RandomAccessIterator<Iter> {... }
concept ForwardIterator<class T> : explicit InputIterator<T> {... }

//Loss of optimization?
// Consider a int* a ForwardIterator, even if it is a InputIterator ...

concept_map ForwardIterator<int*> {}

o "If type matches CA, do not select ‘up’ to CB’s implementation”.
o A derivation is not (also) a specialization.

lp INDIANA UNIVERSITY

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 24 /24

[LIILITGEN "M The Prototype: Update

The “Nail to the Coffin” (in a nutshell)

Not Both. Only “Implicit”’, w/ “Explicit” Refinement ?

Analysis
@ There are several other issues...
o Key ideas:
o Easier to build “explicit” concept maps from “implicit” ones, than the other way
around.
o Default of “explicit” ==> A proliferation of concept maps — and a mindset that
goes with them.
o Default of “implicit” ==> to the need for (far fewer) “explicit” refinements.

lp INDIANA U!

Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 24 /24

VERSITY

[LIILITGEN "M The Prototype: Update

The “Nail to the Coffin” (in a nutshell)

Not Both. Only “Implicit”’, w/ “Explicit” Refinement ?

Analysis
@ There are several other issues...
o Key ideas:
o Easier to build “explicit” concept maps from “implicit” ones, than the other way
around.
o Default of “explicit” ==> A proliferation of concept maps — and a mindset that
goes with them.
o Default of “implicit” ==> to the need for (far fewer) “explicit” refinements.

Conclusion: “Implicit” Concepts + “Explicit” Refinements.

@ Save people from writing redundant concept maps,
@ Teach people to directly address the semantic problems, and
@ not to unnecessarily fear automatic/implicit concepts.

lp N
Larisse Voufo (Open Systems Lab Comp. Sci. § ConceptClang Prototype Update IWR - TU Dresden: 03/16/11 24 /24

	Concepts: Terminology and Historical Perspective
	Origin
	In Relation to Generic Programming
	Concepts-Oriented Programming

	Concepts:The Implementation Design Philosophies
	The Concepts Proposals
	Deriving the Right Proposal

	ConceptClang
	Implementation Philosophy
	The Prototype: Update

