
ConceptClang Alpha:
Prototype Implementation Notes

Larisse Voufo

Open Systems Lab
Comp. Sci. Program

SOIC, IU-Bloomington, USA

03/17/11

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 1 / 29



Outline

Outline

1 Implementation Philosophy

2 The Prototype Implementation Update

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 2 / 29



Implementation Philosophy

ConceptClang: The Goals

1 Implement Concepts in Clang
ConceptGCC in a different platform
Support all Implementation Design Philosophies:

“Indiana” Proposal: “Explicit” Concepts
“Texas” Proposal: “Implicit” Concepts
“Compromise” Proposal – Pre-Frankfurt Standard
“Implicit” Concept w/ “Explicit” Refinements

Follow the pre-Frankfurt standard as closely as possible.
As first-class entities of the language.

Lots of previous work reuse existing features
Yet, still no Concept feature.
Why not try something different ?

2 Analyze issues raised – concretely
3 Determine a right proposal.

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 3 / 29



Implementation Philosophy

ConceptClang: The Goals

1 Implement Concepts in Clang
ConceptGCC in a different platform
Support all Implementation Design Philosophies:

“Indiana” Proposal: “Explicit” Concepts
“Texas” Proposal: “Implicit” Concepts
“Compromise” Proposal – Pre-Frankfurt Standard
“Implicit” Concept w/ “Explicit” Refinements

Follow the pre-Frankfurt standard as closely as possible.
As first-class entities of the language.

Lots of previous work reuse existing features
Yet, still no Concept feature.
Why not try something different ?

2 Analyze issues raised – concretely
3 Determine a right proposal.

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 3 / 29



Implementation Philosophy

ConceptClang: The Goals

1 Implement Concepts in Clang
ConceptGCC in a different platform
Support all Implementation Design Philosophies:

“Indiana” Proposal: “Explicit” Concepts
“Texas” Proposal: “Implicit” Concepts
“Compromise” Proposal – Pre-Frankfurt Standard
“Implicit” Concept w/ “Explicit” Refinements

Follow the pre-Frankfurt standard as closely as possible.
As first-class entities of the language.

Lots of previous work reuse existing features
Yet, still no Concept feature.
Why not try something different ?

2 Analyze issues raised – concretely
3 Determine a right proposal.

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 3 / 29



Implementation Philosophy

Motivations

The Fall of Concepts in C++0x
“Not ready, untried, too risky” – paraphrasing Bjarne Stroustrup

No disagreement on whether to add the feature.
Disagreements on how to add the feature.
Incomplete understanding of implications from each proposal.
Most of the analysis is abstract and unverified
Demand for a concrete analysis!

Only working prototype: ConceptGCC – insufficient
Poor compile-time performance
Lack of some advanced features (e.g., scoped concept maps, associated templates)

Need production-quality implementation
to validate the full concepts-based standard library

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 4 / 29



Implementation Philosophy

Motivations

The Fall of Concepts in C++0x
“Not ready, untried, too risky” – paraphrasing Bjarne Stroustrup

No disagreement on whether to add the feature.
Disagreements on how to add the feature.
Incomplete understanding of implications from each proposal.
Most of the analysis is abstract and unverified
Demand for a concrete analysis!

Only working prototype: ConceptGCC – insufficient
Poor compile-time performance
Lack of some advanced features (e.g., scoped concept maps, associated templates)

Need production-quality implementation
to validate the full concepts-based standard library

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 4 / 29



The Prototype Implementation Update

ConceptClang: Features Update

December, 2010
Trivial Concepts, Maps, and Generic Algorithms

Empty bodies

March, 2011 – Now

1 Features Implemented and Tested
Concept definitions (explicit)
Concept maps: definitions and
instantiation.
Associated functions
Concept coverage and lookup
Concept refinement
Associated requirements
*late_check
Implicit concepts
*Explicit refinement
Constrained templates:
constraints-check
Concept ids as qualified name

2 Features Implemented, but
Probably Buggy

Scoped concepts
Associated function templates
Concept map templates
Associated types

3 In the Horizon:
1 Most Pressing Features

Concept map templates
Associated types
Concept-based overloading

2 Eventually
Use-patterns
Not constraints?
etc...

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 5 / 29



The Prototype Implementation Update

ConceptClang: Features Update

December, 2010
Trivial Concepts, Maps, and Generic Algorithms

Empty bodies

March, 2011 – Now

1 Features Implemented and Tested
Concept definitions (explicit)
Concept maps: definitions and
instantiation.
Associated functions
Concept coverage and lookup
Concept refinement
Associated requirements
*late_check
Implicit concepts
*Explicit refinement
Constrained templates:
constraints-check
Concept ids as qualified name

2 Features Implemented, but
Probably Buggy

Scoped concepts
Associated function templates
Concept map templates
Associated types

3 In the Horizon:
1 Most Pressing Features

Concept map templates
Associated types
Concept-based overloading

2 Eventually
Use-patterns
Not constraints?
etc...

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 5 / 29



The Prototype Implementation Update

ConceptClang: Features Update

December, 2010
Trivial Concepts, Maps, and Generic Algorithms

Empty bodies

March, 2011 – Now

1 Features Implemented and Tested
Concept definitions (explicit)
Concept maps: definitions and
instantiation.
Associated functions
Concept coverage and lookup
Concept refinement
Associated requirements
*late_check
Implicit concepts
*Explicit refinement
Constrained templates:
constraints-check
Concept ids as qualified name

2 Features Implemented, but
Probably Buggy

Scoped concepts
Associated function templates
Concept map templates
Associated types

3 In the Horizon:
1 Most Pressing Features

Concept map templates
Associated types
Concept-based overloading

2 Eventually
Use-patterns
Not constraints?
etc...

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 5 / 29



The Prototype Implementation Update

Concepts: The Terminology
... And Main Implementation Checkpoints

Definition
concept C< typename T > {

// axiom t = ...
typename t;
requires R<T,t>;
void f(T x, t a);
...

}

Model: Concept map
concept_map C<int> {

typedef int t;
void f(int x, int a) {... }
...

}

Constrained Template
template< typename T >

requires (C<T>)
void foo(T x, t a) {

f(x, a);
}

Checkpoints
1 Concept Definition

Non-dependent check
2 Concept Map Specification

Requirements met?
3 Generic Algorithm Definition

Valid concepts?
Concept Coverage:

Check body against constraint.
4 Generic Algorithm Use.

Constraints Check:
Type matches concept?

Pull-in implementation

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 6 / 29



The Prototype Implementation Update

Concepts: The Terminology
... And Main Implementation Checkpoints

Definition
concept C< typename T > {

// axiom t = ...
typename t;
requires R<T,t>;
void f(T x, t a);
...

}

Model: Concept map
concept_map C<int> {

typedef int t;
void f(int x, int a) {... }
...

}

Constrained Template
template< typename T >

requires (C<T>)
void foo(T x, t a) {

f(x, a);
}

Checkpoints
1 Concept Definition

Non-dependent check
2 Concept Map Specification

Requirements met?
3 Generic Algorithm Definition

Valid concepts?
Concept Coverage:

Check body against constraint.
4 Generic Algorithm Use.

Constraints Check:
Type matches concept?

Pull-in implementation

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 6 / 29



The Prototype Implementation Update

Concepts: The Terminology
... And Main Implementation Checkpoints

Definition
concept C< typename T > {

// axiom t = ...
typename t;
requires R<T,t>;
void f(T x, t a);
...

}

Model: Concept map
concept_map R<int,int> {

...
}

concept_map C<int> {
typedef int t;
void f(int x, int a) {... }
...

}

Constrained Template
template< typename T >

requires (C<T>)
void foo(T x, t a) {

f(x, a);
}

Checkpoints
1 Concept Definition

Non-dependent check
2 Concept Map Specification

Requirements met?
3 Generic Algorithm Definition

Valid concepts?
Concept Coverage:

Check body against constraint.
4 Generic Algorithm Use.

Constraints Check:
Type matches concept?

Pull-in implementation

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 6 / 29



The Prototype Implementation Update

Concepts: The Terminology
... And Main Implementation Checkpoints

Definition
concept C< typename T > {

// axiom t = ...
typename t;
requires R<T,t>;
void f(T x, t a);
...

}

Model: Concept map Template
Automatic Dispatching

template< typename T >
requires (R<T,int>)

concept_map C<T> {
typedef int t;
void f(T x, int a) {... }
...

}

Constrained Template
template< typename T >

requires (C<T>)
void foo(T x, t a) {

f(x, a);
}

Checkpoints
1 Concept Definition

Non-dependent check
2 Concept Map Specification

Requirements met?
3 Generic Algorithm Definition

Valid concepts?
Concept Coverage:

Check body against constraint.
4 Generic Algorithm Use.

Constraints Check:
Type matches concept?

Pull-in implementation

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 6 / 29



The Prototype Implementation Update

Concepts: The Terminology
... And Main Implementation Checkpoints

Refinement
concept C< typename T > : PC<T> {

// axiom t = ...
typename t;
requires R<T,t>;
void f(T x, t a);
... }

Model: Concept map
concept_map C<int> {

typedef int t;
void f(int x, int a) {... }
...

}

Constrained Template
template< typename T >

requires (C<T>)
void foo(T x, t a) {

f(x, a);
}

Checkpoints
1 Concept Definition

Non-dependent check
2 Concept Map Specification

Requirements met?
3 Generic Algorithm Definition

Valid concepts?
Concept Coverage:

Check body against constraint.
4 Generic Algorithm Use.

Constraints Check:
Type matches concept?

Pull-in implementation

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 6 / 29



The Prototype Implementation Update

Concepts: The Terminology
... And Main Implementation Checkpoints

Definition
concept C< typename T > : PC<T> {

// axiom t = ...
typename t;
requires R<T,t>;
void f(T x, t a);
... }

Model: Concept map
concept_map C<int> {

typedef int t;
void f(int x, int a) {... }
...

}

Constrained Template
template< typename T >

requires (C<T>)
void foo(T x, t a) {

f(x, a);
}

Checkpoints
1 Concept Definition

Non-dependent check
2 Concept Map Specification

Requirements met?
3 Generic Algorithm Definition

Valid concepts?
Concept Coverage:

Check body against constraint.
4 Generic Algorithm Use.

Constraints Check:
Type matches concept?

Pull-in implementation

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 6 / 29



The Prototype Implementation Update

Concepts: The Terminology
... And Main Implementation Checkpoints

Definition
associated types
associated requirements
associated functions
Refinement

Concept extends requirements of
another

Model: Concept map
How a given type meets a
concept’s requirements
(Automatic) Concept Dispatching

Constrained Template
Expressing the constraints on type
parameters.

Checkpoints
1 Concept Definition

Non-dependent check
2 Concept Map Specification

Requirements met?
3 Generic Algorithm Definition

Valid concepts?
Concept Coverage:

Check body against constraint.
4 Generic Algorithm Use.

Constraints Check:
Type matches concept?

Pull-in implementation

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 6 / 29



The Prototype Implementation Update

ConceptClang: Implementation

1. ConceptDecl
TemplateDecl, DeclContext
TypeParameters
Parents

Explicit
Implicit

Requirements
Associated Types

TemplateTypeParamDecl
TemplateTemplateParamDecl
TypedefDecl

Assigns value to Assoc. Type

Associated Functions
FunctionDecl
FunctionTemplateDecl

2. ConceptMap(Template)Decl

TemplateDecl, DeclContext
TypeParameters

Null ==> ConceptMapDecl

TypeArguments
ParentMaps

Explicit
Implicit

RequirementMaps
Associated Typedefs

TypedefDecl
Associated Functions

FunctionDecl
FunctionTemplateDecl

Concept collect all its maps
In a Partial-Ordered Structure.

1-to-1 mapping between decls in Concept defns (Declarations) and each one of their
maps (Definitions).

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 7 / 29



The Prototype Implementation Update

ConceptClang: Implementation

1. ConceptDecl
TemplateDecl, DeclContext
TypeParameters
Parents

Explicit
Implicit

Requirements
Associated Types

TemplateTypeParamDecl
TemplateTemplateParamDecl
TypedefDecl

Associated Functions
FunctionDecl
FunctionTemplateDecl

2. ConceptMap(Template)Decl

TemplateDecl, DeclContext
TypeParameters

Null ==> ConceptMapDecl

TypeArguments
ParentMaps

Explicit
Implicit

RequirementMaps
Associated Typedefs

TypedefDecl
Associated Functions

FunctionDecl
FunctionTemplateDecl

Concept collect all its maps
In a Partial-Ordered Structure.

1-to-1 mapping between decls in Concept defns (Declarations) and each one of their
maps (Definitions).

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 7 / 29



The Prototype Implementation Update

ConceptClang: Implementation

1. ConceptDecl
TemplateDecl, DeclContext
TypeParameters
Parents

Explicit
Implicit

Requirements
Associated Types

TemplateTypeParamDecl
TemplateTemplateParamDecl
TypedefDecl

Associated Functions
FunctionDecl
FunctionTemplateDecl

2. ConceptMap(Template)Decl

TemplateDecl, DeclContext
TypeParameters

Null ==> ConceptMapDecl

TypeArguments
ParentMaps

Explicit
Implicit

RequirementMaps
Associated Typedefs

TypedefDecl
Associated Functions

FunctionDecl
FunctionTemplateDecl

Concept collect all its maps
In a Partial-Ordered Structure.

1-to-1 mapping between decls in Concept defns (Declarations) and each one of their
maps (Definitions).

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 7 / 29



The Prototype Implementation Update

ConceptClang: Implementation

1. ConceptDecl
TemplateDecl, DeclContext
TypeParameters
Parents

Explicit
Implicit

Requirements
Associated Types

TemplateTypeParamDecl
TemplateTemplateParamDecl
TypedefDecl

Associated Functions
FunctionDecl
FunctionTemplateDecl

2. ConceptMap(Template)Decl

TemplateDecl, DeclContext
TypeParameters

Null ==> ConceptMapDecl

TypeArguments
ParentMaps

Explicit
Implicit

RequirementMaps
Associated Typedefs

TypedefDecl
Associated Functions

FunctionDecl
FunctionTemplateDecl

Concept collect all its maps
In a Partial-Ordered Structure.

1-to-1 mapping between decls in Concept defns (Declarations) and each one of their
maps (Definitions).

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 7 / 29



The Prototype Implementation Update

ConceptClang: Implementation

1. ConceptDecl
TemplateDecl, DeclContext
TypeParameters
Parents

Explicit
Implicit

Requirements
Associated Types

TemplateTypeParamDecl
TemplateTemplateParamDecl
TypedefDecl

Associated Functions
FunctionDecl
FunctionTemplateDecl

2. ConceptMap(Template)Decl

TemplateDecl, DeclContext
TypeParameters

Null ==> ConceptMapDecl

TypeArguments
ParentMaps

Explicit
Implicit

RequirementMaps
Associated Typedefs

TypedefDecl
Associated Functions

FunctionDecl
FunctionTemplateDecl

Concept collect all its maps
In a Partial-Ordered Structure.

1-to-1 mapping between decls in Concept defns (Declarations) and each one of their
maps (Definitions).

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 7 / 29



The Prototype Implementation Update

Conditions

1-to-1 mapping between decls in Concept defns (Declarations) and each one of
their maps (Definitions).
ConceptDecl can provide default implementation(s).
The Rules for looking up definitions:

Check in Map.
If not, Check in Concept
If not, Check in Immediate Surrounding Scope.

ConceptMapDecl can provide implementations for the associated decls of
parents and requirements.

Reducing verbosity

Parents and Requirements share the same type of Data Structure.
Generating a ConceptMap:

Maps for its Requirements MUST exist, unless they are for implicit concepts.
Maps for Parents are implicitly generated, if they don’t exist.

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 8 / 29



The Prototype Implementation Update

Conditions

1-to-1 mapping between decls in Concept defns (Declarations) and each one of
their maps (Definitions).
ConceptDecl can provide default implementation(s).
The Rules for looking up definitions:

Check in Map.
If not, Check in Concept
If not, Check in Immediate Surrounding Scope.

ConceptMapDecl can provide implementations for the associated decls of
parents and requirements.

Reducing verbosity

Parents and Requirements share the same type of Data Structure.
Generating a ConceptMap:

Maps for its Requirements MUST exist, unless they are for implicit concepts.
Maps for Parents are implicitly generated, if they don’t exist.

Example:

int dothis() {... }

concept A<typename T> {
int dothis();

}

concept_map<int> {} // Picks up global implementation of dothis()

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 8 / 29



The Prototype Implementation Update

Conditions

1-to-1 mapping between decls in Concept defns (Declarations) and each one of
their maps (Definitions).
ConceptDecl can provide default implementation(s).
The Rules for looking up definitions:

Check in Map.
If not, Check in Concept
If not, Check in Immediate Surrounding Scope.

ConceptMapDecl can provide implementations for the associated decls of
parents and requirements.

Reducing verbosity

Parents and Requirements share the same type of Data Structure.
Generating a ConceptMap:

Maps for its Requirements MUST exist, unless they are for implicit concepts.
Maps for Parents are implicitly generated, if they don’t exist.

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 8 / 29



The Prototype Implementation Update

Conditions

1-to-1 mapping between decls in Concept defns (Declarations) and each one of
their maps (Definitions).
ConceptDecl can provide default implementation(s).
The Rules for looking up definitions:

Check in Map.
If not, Check in Concept
If not, Check in Immediate Surrounding Scope.

ConceptMapDecl can provide implementations for the associated decls of
parents and requirements.

Reducing verbosity

Parents and Requirements share the same type of Data Structure.
Generating a ConceptMap:

Maps for its Requirements MUST exist, unless they are for implicit concepts.
Maps for Parents are implicitly generated, if they don’t exist.

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 8 / 29



The Prototype Implementation Update

Conditions

1-to-1 mapping between decls in Concept defns (Declarations) and each one of
their maps (Definitions).
ConceptDecl can provide default implementation(s).
The Rules for looking up definitions:

Check in Map.
If not, Check in Concept
If not, Check in Immediate Surrounding Scope.

ConceptMapDecl can provide implementations for the associated decls of
parents and requirements.

Reducing verbosity

Parents and Requirements share the same type of Data Structure.
Generating a ConceptMap:

Maps for its Requirements MUST exist, unless they are for implicit concepts.
Maps for Parents are implicitly generated, if they don’t exist.

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 8 / 29



The Prototype Implementation Update

Constructing a Concept Map

If for a valid concept, create a ConceptMapDecl.
Collect its associated decls into a temporary collection – say DeclsInProcess.
For each decl in the mapped concept:

Lookup the defnition in the map.
If not found, error.
If found, remove from DeclsInProcess.

For each Requirement in the mapped concept.
Type-check
Find a map. If not found and concept is implicit, Generate it.
Store map in concept map’s RequirementMaps.

For each Parent in the mapped concept.
Type-check
Find or Generate a map.
Store map in concept map’s ParentMaps.

If DeclInProcess is non-empty:
If not already processed in refining maps, error.

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 9 / 29



The Prototype Implementation Update

Constructing a Concept Map

If for a valid concept, create a ConceptMapDecl.
Collect its associated decls into a temporary collection – say DeclsInProcess.
For each decl in the mapped concept:

Lookup the defnition in the map.
If not found, error.
If found, remove from DeclsInProcess.

For each Requirement in the mapped concept.
Type-check
Find a map. If not found and concept is implicit, Generate it.
Store map in concept map’s RequirementMaps.

For each Parent in the mapped concept.
Type-check
Find or Generate a map.
Store map in concept map’s ParentMaps.

If DeclInProcess is non-empty:
If not already processed in refining maps, error.

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 9 / 29



The Prototype Implementation Update

ConceptClang: Features Review

1 Features Implemented and Tested
Concept definitions (explicit)
Concept maps: definitions and instantiation.
Associated functions
Concept coverage and lookup
Concept refinement
Associated requirements
*late_check
Implicit concepts
*Explicit refinement
Constrained templates: constraints-check
Concept ids as qualified name

2 Features Implemented, but Probably Buggy
Scoped concepts
Associated function templates
Concept map templates
Associated types

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 10 / 29



The Prototype Implementation Update

Constructing a Concept Map – incl. Explicit
derivation

If for a valid concept, create a ConceptMapDecl.
Collect its associated decls into a temporary collection – say DeclsInProcess.
For each ExplicitParent in the mapped concept.

Type-check
Find or Generate a map.
Store map in concept map’s ExplicitParentMaps.

For each decl in the mapped concept:
Lookup the defnition in the map.
If not found, error.
If found, remove from DeclsInProcess.

For each Requirement in the mapped concept.
Type-check
Find a map. If not found and concept is implicit, Generate it.
Store map in concept map’s RequirementMaps.

For each ImplicitParent in the mapped concept.
Type-check
Find or Generate a map.
Store map in concept map’s ImplicitParentMaps.

If DeclsInProcess is non-empty:
If not already processed in refining maps, error.

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 11 / 29



The Prototype Implementation Update

ConceptClang: Features Review

1 Features Implemented and Tested
Concept definitions (explicit)
Concept maps: definitions and instantiation.
Associated functions
Concept coverage and lookup
Concept refinement
Associated requirements
*late_check
Implicit concepts
*Explicit refinement
Constrained templates: constraints-check
Concept ids as qualified name

2 Features Implemented, but Probably Buggy
Scoped concepts
Associated function templates
Concept map templates
Associated types

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 12 / 29



The Prototype Implementation Update

ConceptClang: Implementation

3. TemplateDecl Specification
Collect required concepts

Type-check each against templates parameters
Generate concept map archetypes for each.
Collect archetypes in current scope.

Concept Coverage
Check body of algorithm against required concepts (their map archetypes).

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 13 / 29



The Prototype Implementation Update

Constructing a Concept Map: Generating a
Concept Map Archetype

If for a valid concept, create a ConceptMapDecl or ConceptMapArchetype.
Collect its associated decls into a temporary collection – say DeclsInProcess.
For each ExplicitParent in the mapped concept.

Type-check
Find or Generate a map.
Store map in concept map’s ExplicitParentMaps.

For each decl in the mapped concept:
If isArchetype:

Copy decl’s prototype. Substitute types.
Otherwise:

Lookup the defnition in the map.
If not found, error.
If found, remove from DeclsInProcess.

For each Requirement in the mapped concept.
Type-check
Find a map. If not found and concept is implicit, Generate it.
Store map in concept map’s RequirementMaps.

For each ImplicitParent in the mapped concept.
Type-check
Find or Generate a map.
Store map in concept map’s ImplicitParentMaps.

If DeclsInProcess is non-empty:
If not already processed in refining maps, error.

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 14 / 29



The Prototype Implementation Update

Concept Coverage

New scope kinds: RestrictedScope
At occurrence of requires keyword.

Extension to current lookup procedure:
If in RestrictedScope:

lookup in concept map archetypes.
Exceptions: TemplateParamScope, LateCheckScope, Non-dependent CallExpr, ...

If in LateCheckScope:
proceed as usual, looking into archetypes as well

Lookup of Non-dependent CallExpr:
add LateCheckScope to scope flags

Lookup of other allowed expressions:
... Work In Progress ...

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 15 / 29



The Prototype Implementation Update

Concept Coverage and late_check

New scope kinds: RestrictedScope , LateCheckScope
At occurrence of requires keyword.

Extension to current lookup procedure:
If in RestrictedScope:

lookup in concept map archetypes.
Exceptions: TemplateParamScope, LateCheckScope, Non-dependent CallExpr, ...

If in LateCheckScope:
proceed as usual, looking into archetypes as well

Lookup of Non-dependent CallExpr:
add LateCheckScope to scope flags

Lookup of other allowed expressions:
... Work In Progress ...

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 15 / 29



The Prototype Implementation Update

Concept Coverage and late_check

New scope kinds: RestrictedScope , LateCheckScope
At occurrence of requires keyword.

Extension to current lookup procedure:
If in RestrictedScope:

lookup in concept map archetypes.
Exceptions: TemplateParamScope, LateCheckScope, Non-dependent CallExpr, ...

If in LateCheckScope:
proceed as usual, looking into archetypes as well

Lookup of Non-dependent CallExpr:
add LateCheckScope to scope flags

Lookup of other allowed expressions:
... Work In Progress ...Example: Non-dependent CallExpr

concept A<typename T> {
int f(T);

}

template<typename T>
requires A<T>

void myfunc(T a, T b) {
f(a) == f(b); // call to ’==’ is non-dependent.

}

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 15 / 29



The Prototype Implementation Update

Concept Coverage and late_check

New scope kinds: RestrictedScope , LateCheckScope
At occurrence of requires keyword.

Extension to current lookup procedure:
If in RestrictedScope:

lookup in concept map archetypes.
Exceptions: TemplateParamScope, LateCheckScope, Non-dependent CallExpr, ...

If in LateCheckScope:
proceed as usual, looking into archetypes as well

Lookup of Non-dependent CallExpr:
add LateCheckScope to scope flags

Lookup of other allowed expressions:
... Work In Progress ...Example: Non-dependent CallExpr

concept A<typename T> {
int f(T);

}

template<typename T>
requires A<T>

void myfunc(T a, T b) {
f(a) == f(b); // call to ’==’ is non-dependent.

}

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 15 / 29



The Prototype Implementation Update

Concept Coverage and late_check

New scope kinds: RestrictedScope , LateCheckScope
At occurrence of requires keyword.

Extension to current lookup procedure:
If in RestrictedScope:

lookup in concept map archetypes.
Exceptions: TemplateParamScope, LateCheckScope, Non-dependent CallExpr, ...

If in LateCheckScope:
proceed as usual, looking into archetypes as well

Lookup of Non-dependent CallExpr:
add LateCheckScope to scope flags

Lookup of other allowed expressions:
... Work In Progress ...Example: late_check

concept A<typename T> {
T f(T);

}
template<typename T>

requires A<T>
void myfunc(T a, T b) {

late_check {
f(a) == f(b); // call to ’==’ is not non-dependent. Would not work without late_check.

}
}

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 15 / 29



The Prototype Implementation Update

Concept Coverage and late_check

New scope kinds: RestrictedScope , LateCheckScope
At occurrence of requires keyword.

Extension to current lookup procedure:
If in RestrictedScope:

lookup in concept map archetypes.
Exceptions: TemplateParamScope, LateCheckScope, Non-dependent CallExpr, ...

If in LateCheckScope:
proceed as usual, looking into archetypes as well

Lookup of Non-dependent CallExpr:
add LateCheckScope to scope flags

Lookup of other allowed expressions:
... Work In Progress ...

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 15 / 29



The Prototype Implementation Update

ConceptClang: Features Review

1 Features Implemented and Tested
Concept definitions (explicit)
Concept maps: definitions and instantiation.
Associated functions
Concept coverage and lookup
Concept refinement
Associated requirements
*late_check
Implicit concepts
*Explicit refinement
Constrained templates: constraints-check
Concept ids as qualified name

2 Features Implemented, but Probably Buggy
Scoped concepts
Associated function templates
Concept map templates
Associated types

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 16 / 29



The Prototype Implementation Update

ConceptClang: Implementation

4. TemplateDecl Use
Type-check

Template arguments against parameters

Constraints-check
Template arguments and parameters against each required concept
find or generate maps for each required concept.

Create TemplateDecl specialization
Mark for instantiation.

Instantiate specialization
Comes much later... At end of translation unit.

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 17 / 29



The Prototype Implementation Update

ConceptClang: Implementation

4. TemplateDecl Use
Type-check

Template arguments against parameters

Constraints-check
Template arguments and parameters against each required concept
find or generate maps for each required concept.

Create TemplateDecl specialization
Mark for instantiation.

Instantiate specialization
Comes much later... At end of translation unit.

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 17 / 29



The Prototype Implementation Update

Instantiating a Specialization

DeclContext must be instantiated by now.
Get body from template decl.
Perform necessary substitutions / transformations.

Transform each statement/decl in body.
If stmt/decl refers to a member of a concept:

If is CallExpr:
Identify Concept.
Find map for template arguments.
Mark map for instantiation
Rebuild CallExpr, looking up in identifier in map.

If is any Decl:
Identify Concept.
Find map for template arguments.
Find Decl’s definition in Map.
Mark map for instantiation. Also Mark Decl if necessary.
Rebuild CallExpr, looking up in identifier in map.

Ideally, this procedure can be re-used for references to types.
But it currently does not work.
At this point, Clang’s structure for types do not give access to DeclContext.
Work in progress...

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 18 / 29



The Prototype Implementation Update

Instantiating a Specialization

DeclContext must be instantiated by now.
Get body from template decl.
Perform necessary substitutions / transformations.

Transform each statement/decl in body.
If stmt/decl refers to a member of a concept:

If is CallExpr:
Identify Concept.
Find map for template arguments.
Mark map for instantiation
Rebuild CallExpr, looking up in identifier in map.

If is any Decl:
Identify Concept.
Find map for template arguments.
Find Decl’s definition in Map.
Mark map for instantiation. Also Mark Decl if necessary.
Rebuild CallExpr, looking up in identifier in map.

Ideally, this procedure can be re-used for references to types.
But it currently does not work.
At this point, Clang’s structure for types do not give access to DeclContext.
Work in progress...

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 18 / 29



The Prototype Implementation Update

Instantiating a Specialization

DeclContext must be instantiated by now.
Get body from template decl.
Perform necessary substitutions / transformations.

Transform each statement/decl in body.
If stmt/decl refers to a member of a concept:

If is CallExpr:
Identify Concept.
Find map for template arguments.
Mark map for instantiation
Rebuild CallExpr, looking up in identifier in map.

If is any Decl:
Identify Concept.
Find map for template arguments.
Find Decl’s definition in Map.
Mark map for instantiation. Also Mark Decl if necessary.
Rebuild CallExpr, looking up in identifier in map.

Ideally, this procedure can be re-used for references to types.
But it currently does not work.
At this point, Clang’s structure for types do not give access to DeclContext.
Work in progress...

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 18 / 29



The Prototype Implementation Update

Instantiating a Specialization

DeclContext must be instantiated by now.
Get body from template decl.
Perform necessary substitutions / transformations.

Transform each statement/decl in body.
If stmt/decl refers to a member of a concept:

If is CallExpr:
Identify Concept.
Find map for template arguments.
Mark map for instantiation
Rebuild CallExpr, looking up in identifier in map.

If is any Decl:
Identify Concept.
Find map for template arguments.
Find Decl’s definition in Map.
Mark map for instantiation. Also Mark Decl if necessary.
Rebuild CallExpr, looking up in identifier in map.

Ideally, this procedure can be re-used for references to types.
But it currently does not work.
At this point, Clang’s structure for types do not give access to DeclContext.
Work in progress...

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 18 / 29



The Prototype Implementation Update

Instantiating a Specialization

DeclContext must be instantiated by now.
Get body from template decl.
Perform necessary substitutions / transformations.

Transform each statement/decl in body.
If stmt/decl refers to a member of a concept:

If is CallExpr:
Identify Concept.
Find map for template arguments.
Mark map for instantiation
Rebuild CallExpr, looking up in identifier in map.

If is any Decl:
Identify Concept.
Find map for template arguments.
Find Decl’s definition in Map.
Mark map for instantiation. Also Mark Decl if necessary.
Rebuild CallExpr, looking up in identifier in map.

Ideally, this procedure can be re-used for references to types.
But it currently does not work.
At this point, Clang’s struture for types do not give access to DeclContext.
Work in progress...

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 19 / 29



The Prototype Implementation Update

Instantiating a Specialization

Option 1: Generate maps at each reference point.
Option 2: Generate maps once.
Solution: Option 2

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 20 / 29



The Prototype Implementation Update

ConceptClang: Implementation

4. TemplateDecl Use – Update
Type-check

Template arguments against parameters
Constraints-check

Template arguments and parameters against each required concept
find or generate maps for each required concept.
Collect maps in temporary collection.

Create TemplateDecl specialization
Store generated maps in specialization.
Mark for instantiation.

Instantiate specialization
Comes much later... At end of translation unit.

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 21 / 29



The Prototype Implementation Update

Instantiating a Specialization

DeclContext must be instantiated by now.
Get body from template decl.
Perform necessary substitutions / transformations.

Transform each statement/decl in body.
If stmt/decl refers to a member of a concept:

If is CallExpr:
Identify Concept.
Find map for template arguments – in specialization’s maps.
Mark map for instantiation
Rebuild CallExpr, looking up in identifier in map.

If is any Decl:
Identify Concept.
Find map for template arguments – in specialization’s maps.
Find Decl’s definition in Map.
Mark map for instantiation. Also Mark Decl if necessary.
Rebuild CallExpr, looking up in identifier in map.

If is Class specialization:
Propagate RequirementMaps from specialization to inner decls.

Ideally, this procedure can be re-used for references to types.
But it currently does not work.
At this point, Clang’s struture for types do not give access to DeclContext.
Work in progress...

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 22 / 29



The Prototype Implementation Update

Constraints-check procedure

Given:
TemplateParams, TemplateArgs,
RequiredConcepts, RequiredConceptMaps

For each RequiredConcept:
Identify:

RequiredConceptParams, RequiredConceptArgs.
Match RequiredConceptArgs against TemplateParams and TemplateArgs:

produces RequiredConceptMapArgs.

Try finding a map matching RequiredConceptMapArgs – say
RequiredConceptMap.
if found, add RequiredConceptMap to RequiredConceptMaps
else if RequiredConcept is implicit,

Generate the map – RequiredConceptMap.
if success, add to RequiredConceptMaps.
else, FAIL!

Constrained Template Definition
template< typename T ... >

requires (C<T> ... )
void foo(T x, ... , int a) {

f(x, a);
}

Constrained Template Use
foo<char ... >(’a’, 1);

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 23 / 29



The Prototype Implementation Update

Constraints-check procedure

Given:
TemplateParams, TemplateArgs,
RequiredConcepts, RequiredConceptMaps

For each RequiredConcept:
Identify:

RequiredConceptParams, RequiredConceptArgs.
Match RequiredConceptArgs against TemplateParams and TemplateArgs:

produces RequiredConceptMapArgs.

Try finding a map matching RequiredConceptMapArgs – say
RequiredConceptMap.
if found, add RequiredConceptMap to RequiredConceptMaps
else if RequiredConcept is implicit,

Generate the map – RequiredConceptMap.
if success, add to RequiredConceptMaps.
else, FAIL!

Constrained Template Definition
template< TemplateParam ... >

requires (RequiredConcept<T> ... )
void foo(TemplateParam x, ... , int a) {

f(x, a);
}

Constrained Template Use
foo<TemplateArg ... >(’a’, 1);

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 23 / 29



The Prototype Implementation Update

Constraints-check procedure

Given:
TemplateParams, TemplateArgs,
RequiredConcepts, RequiredConceptMaps

For each RequiredConcept:
Identify:

RequiredConceptParams, RequiredConceptArgs.
Match RequiredConceptArgs against TemplateParams and TemplateArgs:

produces RequiredConceptMapArgs.

Try finding a map matching RequiredConceptMapArgs – say
RequiredConceptMap.
if found, add RequiredConceptMap to RequiredConceptMaps
else if RequiredConcept is implicit,

Generate the map – RequiredConceptMap.
if success, add to RequiredConceptMaps.
else, FAIL!

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 23 / 29



The Prototype Implementation Update

Constraints-check procedure

Given:
TemplateParams, TemplateArgs,
RequiredConcepts, RequiredConceptMaps

For each RequiredConcept:
Identify:

RequiredConceptParams, RequiredConceptArgs.
Match RequiredConceptArgs against TemplateParams and TemplateArgs:

produces RequiredConceptMapArgs.

Try finding a map matching RequiredConceptMapArgs – say
RequiredConceptMap.
if found, add RequiredConceptMap to RequiredConceptMaps
else if RequiredConcept is implicit,

Generate the map – RequiredConceptMap.
if success, add to RequiredConceptMaps.
else, FAIL!

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 23 / 29



The Prototype Implementation Update

Constraints-check procedure

Given:
TemplateParams, TemplateArgs,
RequiredConcepts, RequiredConceptMaps

For each RequiredConcept:
Identify:

RequiredConceptParams, RequiredConceptArgs.
Match RequiredConceptArgs against TemplateParams and TemplateArgs:

produces RequiredConceptMapArgs.

Try finding a map matching RequiredConceptMapArgs – say
RequiredConceptMap.
if found, add RequiredConceptMap to RequiredConceptMaps
else if RequiredConcept is implicit,

Generate the map – RequiredConceptMap.
if success, add to RequiredConceptMaps.
else, FAIL!

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 23 / 29



The Prototype Implementation Update

Constraints-check procedure

Given:
TemplateParams, TemplateArgs,
RequiredConcepts, RequiredConceptMaps

For each RequiredConcept:
Identify:

RequiredConceptParams, RequiredConceptArgs.
Match RequiredConceptArgs against TemplateParams and TemplateArgs:

produces RequiredConceptMapArgs.

Try finding a map matching RequiredConceptMapArgs – say
RequiredConceptMap.
if found, add RequiredConceptMap to RequiredConceptMaps
else if RequiredConcept is implicit,

Generate the map – RequiredConceptMap.
if success, add to RequiredConceptMaps.
else, FAIL!

Also applies to Concept Map Generation!

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 23 / 29



The Prototype Implementation Update

Constraints-check procedure – For Concept Map
Generation

Given:
ConceptParams, ConceptMapArgs,
Parents/Requirements, ParentMaps/RequirementMaps

For each Parent/Requirement:
Identify:

*Params, *Args.
Match *Args against ConceptParams and ConceptMapArgs:

produces *MapArgs.

Try finding a map matching *MapArgs – say ParentMap/RequirementMap.
if found, add ParentMap/RequirementMap to ParentMaps/RequirementMaps
else if Parent or Requirement is implicit

Generate the map – ParentMap/RequirementMap.
if success, add to ParentMaps/RequirementMaps.
else, FAIL!

Concept Definition
concept A< typename T ... > : PA<T> ... {

...
requires (C<T> ... )
...

}

Concept Map
concept_map A < char ... > {

...
}

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 24 / 29



The Prototype Implementation Update

Constraints-check procedure – For Concept Map
Generation

Given:
ConceptParams, ConceptMapArgs,
Parents/Requirements, ParentMaps/RequirementMaps

For each Parent/Requirement:
Identify:

*Params, *Args.
Match *Args against ConceptParams and ConceptMapArgs:

produces *MapArgs.

Try finding a map matching *MapArgs – say ParentMap/RequirementMap.
if found, add ParentMap/RequirementMap to ParentMaps/RequirementMaps
else if Parent or Requirement is implicit

Generate the map – ParentMap/RequirementMap.
if success, add to ParentMaps/RequirementMaps.
else, FAIL!

Concept Definition
concept A< ConceptParam ... > : Parent<T> ... {

...
requires (Requirement<T> ... )
...

}

Concept Map
concept_map A < ConceptMapArg ... > {

...
}

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 24 / 29



The Prototype Implementation Update

Constraints-check procedure – For Concept Map
Generation

Given:
ConceptParams, ConceptMapArgs,
Parents/Requirements, ParentMaps/RequirementMaps

For each Parent/Requirement:
Identify:

*Params, *Args.
Match *Args against ConceptParams and ConceptMapArgs:

produces *MapArgs.

Try finding a map matching *MapArgs – say ParentMap/RequirementMap.
if found, add ParentMap/RequirementMap to ParentMaps/RequirementMaps
else if Parent or Requirement is implicit

Generate the map – ParentMap/RequirementMap.
if success, add to ParentMaps/RequirementMaps.
else, FAIL!

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 24 / 29



The Prototype Implementation Update

Constraints-check procedure – For Concept Map
Generation

Given:
ConceptParams, ConceptMapArgs,
Parents/Requirements, ParentMaps/RequirementMaps

For each Parent/Requirement:
Identify:

*Params, *Args.
Match *Args against ConceptParams and ConceptMapArgs:

produces *MapArgs.

Try finding a map matching *MapArgs – say ParentMap/RequirementMap.
if found, add ParentMap/RequirementMap to ParentMaps/RequirementMaps
else if Parent or Requirement is implicit

Generate the map – ParentMap/RequirementMap.
if success, add to ParentMaps/RequirementMaps.
else, FAIL!

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 24 / 29



The Prototype Implementation Update

Constructing a Concept Map

If for a valid concept, create a ConceptMapDecl or ConceptMapArchetype.
Collect its associated decls into a temporary collection – say DeclsInProcess.
For each ExplicitParent in the mapped concept.

Type-check
Find or Generate a map.
Store map in concept map’s ExplicitParentMaps.

For each decl in the mapped concept:
If isArchetype:

Copy decl’s prototype. Substitute types.
Otherwise:

Lookup the defnition in the map.
If not found, error.
If found, remove from DeclsInProcess.

For each Requirement in the mapped concept.
Type-check
Find a map. If not found and concept is implicit, Generate it.
Store map in concept map’s RequirementMaps.

For each ImplicitParent in the mapped concept.
Type-check
Find or Generate a map.
Store map in concept map’s ImplicitParentMaps.

If DeclsInProcess is non-empty:
If not already processed in refining maps, error.

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 25 / 29



The Prototype Implementation Update

Constructing a Concept Map

If for a valid concept, create a ConceptMapDecl or ConceptMapArchetype.
Collect its associated decls into a temporary collection – say DeclsInProcess.
Constraint-check:

Mapped concept’s parameters, map’s arguments,
Mapped concept’s ExplicitParents, ExplicitParentMaps

For each decl in the mapped concept:
If isArchetype:

Copy decl’s prototype. Substitute types.
Otherwise:

Lookup the defnition in the map.
If not found, error.
If found, remove from DeclsInProcess.

Constraint-check:
Mapped concept’s parameters, map’s arguments,
Mapped concept’s Requirements, RequirementMaps

Constraint-check:
Mapped concept’s parameters, map’s arguments,
Mapped concept’s ImplicitParents, ImplicitParentMaps

If DeclsInProcess is non-empty:
If not already processed in refining maps, error.

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 25 / 29



The Prototype Implementation Update

The Constraints-check procedure

Given:
TemplateParams, TemplateArgs,
RequiredConcepts, RequiredConceptMaps

For each RequiredConcept:
Identify:

RequiredConceptParams, RequiredConceptArgs.
Match RequiredConceptArgs against TemplateParams and TemplateArgs:

produces RequiredConceptMapArgs.

Try finding a map matching RequiredConceptMapArgs – say
RequiredConceptMap.
if found, add RequiredConceptMap to RequiredConceptMaps
else if RequiredConcept is implicit , or to be treated as implicit (e.g.
ParentMaps),

Generate the map – RequiredConceptMap.
if success, add to RequiredConceptMaps.
else, FAIL!

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 26 / 29



The Prototype Implementation Update

ConceptClang: Features Review
1 Features Implemented and Tested

Concept definitions (explicit)
Concept maps: definitions and instantiation.
Associated functions
Concept coverage and lookup
Concept refinement
Associated requirements
*late_check
Implicit concepts
*Explicit refinement
Constrained templates: constraints-check
Concept ids as qualified name

2 Features Implemented, but Probably Buggy
Scoped concepts
Associated function templates
Concept map templates
Associated types

... And We are Done (for now)! =D

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 27 / 29



The Prototype Implementation Update

ConceptClang: Features Review
1 Features Implemented and Tested

Concept definitions (explicit)
Concept maps: definitions and instantiation.
Associated functions
Concept coverage and lookup
Concept refinement
Associated requirements
*late_check
Implicit concepts
*Explicit refinement
Constrained templates: constraints-check
Concept ids as qualified name

2 Features Implemented, but Probably Buggy
Scoped concepts
Associated function templates
Concept map templates
Associated types

... And We are Done (for now)! =D

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 27 / 29



The Prototype Implementation Update

Use-Case Examples

1 Prototype Released: Alpha mode.
http://zalewski.indefero.net/p/clang/
Download
Run Tests
Play!

2 Future Plans
Mini-BGL
stdlib
Others ???

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 28 / 29

http://zalewski.indefero.net/p/clang/


The Prototype Implementation Update

Thank You!

Larisse Voufo (Open Systems Lab Comp. Sci. Program SOIC, IU-Bloomington, USA)ConceptClang Alpha: Prototype Implementation Notes 03/17/11 29 / 29


	Implementation Philosophy
	The Prototype Implementation Update

