Sub-linear Distributed Algorithms for Sparse Certificates and Biconnected Components*

Ramakrishna Thurimella

Department of Mathematics and Computer Science, University of Denver, Denver, Colorado 80208

Received June 12, 1995

A certificate for the \(k\) connectivity (\(k\) connectivity refers to both \(k\)-edge connectivity and \(k\)-vertex connectivity unless explicitly stated otherwise) of a graph \(G = (V, E)\) is a subset \(E'\) of \(E\) such that \((V, E')\) is \(k\) connected if \(G\) is \(k\) connected. Let \(n = |V|\) and \(m = |E|\). A certificate is called sparse if it has size \(O(kn)\). We present a distributed algorithm for computing a sparse certificate for \(k\) connectivity. Let \(f(n)\) and \(g(n)\) be the distributed time complexities of computing a minimum spanning tree and a \(k\)-dominating set, respectively. Currently, \(f(n) - g(n) = O(\sqrt{n} \log^* n + D)\), where \(D\) is the diameter of the network. The time complexities for finding a \(k\)-edge certificate and a \(k\)-vertex certificate are \(O(k(D + f(n)))\) and \(O(k(D + f(n) + g(n) + \sqrt{n}))\), respectively. A new algorithm for identifying biconnected components is also presented. This algorithm is significantly simpler than many existing algorithms and can be implemented in a distributed environment to run in \(O(D + g(n) + \sqrt{n})\) time. All algorithms improve on the previous best known time bounds. Our main focus in this paper is the time complexity. However, no more than a polynomial number of messages, each of size \(O(\log n)\), are generated by the algorithm.

1. INTRODUCTION

Graph connectivity is one of the main topics in network reliability. In this paper we study the distributed time complexity of questions pertaining to vertex and edge connectivity of graphs. A connected graph is said to be \(k\)-vertex (resp. \(k\)-edge) connected if it has at least \((k + 1)\) vertices (resp. edges), and the deletion of any \((k - 1)\) vertices (resp. edges) leaves the graph connected. The vertex connectivity when \(k = 2\) is also known as biconnectivity. Biconnected components or blocks are equivalence classes

* Research supported in part by National Science Foundation Grant CCR-9210604.
induced on the edge set by relating two edges \(e_1, e_2 \) if and only if there exists a simple cycle containing \(e_1 \) and \(e_2 \). The edge and vertex connectivity determine, respectively, the number of link and node failures that can be tolerated by a distributed network.

A certificate for the \(k \) connectivity of a graph \(G = (V, E) \) is a subset \(E' \) of \(E \) such that the subgraph \((V, E') \) is \(k \) connected if (and only if) \(G \) is \(k \) connected. The size of a certificate is \(|E'|\). Let \(n \) and \(m \) denote \(|V| \) and \(|E|\). There is a trivial lower bound of \(kn/2 \) on the size of a certificate for \(k \) connectivity because the degree of every vertex in a \(k \) connected graph is at least \(k \). An example of a certificate for the 1-connectivity of a connected graph \(G \) is a spanning tree of \(G \). Moreover, this is a minimum-size certificate.

For \(k > 1 \), the problem of finding minimum-size certificates for \(k \) connectivity is NP-complete [GJ 79]. Therefore, certificates whose size is within a constant factor of minimum are of interest. Call a certificate for \(k \) connectivity sparse if it has size \(O(kn) \).

An area of research interest in distributed computing is to design fault tolerant protocols [Ha 87, IR 88]. To this end, sparse certificates are useful in serving as a reliable means of doing a message-efficient broadcast on a distributed network. They are preferable to a spanning tree because the latter can withstand no failures. Sparse certificates for \(k \) connectivity can be computed in linear time on the sequential model of computation [NI 92]. However, this algorithm is not amenable for implementation on the distributed model. Efficient parallel and distributed algorithms for computing sparse certificates are given by [CKT 93]. Their distributed algorithm is rather simple: Find a breadth-first search (BFS) spanning tree \(F_1 \) in \(G \) with an arbitrary vertex as the root. Delete the edges of \(F_1 \) from \(G \) and denote the resulting graph by \(G - F_1 \). Find another BFS spanning forest \(F_2 \) in \(G - F_1 \), again rooting each tree at an arbitrary vertex in each component. Repeat this process \(k \) times. It is shown in [CKT 93] that \(F_1 \cup F_2 \cup \cdots \cup F_k \) is a sparse certificate for \(k \) connectivity of \(G \). The best known distributed algorithm for BFS takes time \(O(D \log^3 n) \) with \(O(m + n \log^3 n) \) messages [AP 90] where \(D \) is the diameter of the network. Nonetheless, the time to compute a sparse certificate in the worst case is \(O(kn \log^3 n) \) (and not \(O(kD \log^3 n) \)) as the diameter of \(G - \sum F_i \) for some \(i, 1 \leq i \leq (k - 1) \), could be as high as \(n \). Any algorithm that restricts the computation and communication to a subgraph of the original graph will suffer from this drawback. Our approach in this paper will avoid this shortcoming by making use of a spanning tree of the entire graph even during those phases that concern only subgraphs.

The question of identifying inherent graph parameters that govern the distributed complexity of various fundamental network problems has been raised by [GKP 93]. This issue is important because many previous algorithms that achieved a time bound of \(O(n) \) claimed optimality under the
assumption that the solution is optimal for some networks of \(n \) vertices. A more desirable optimality, as argued in [GKP 93], is achieved when an algorithm solves a problem optimally on every instance. They further make a case for the diameter of a network \(D \) as being one of the important parameters that is inherent in the distributed complexity of algorithms. Under this paradigm, they present a novel distributed algorithm for computing a minimum spanning tree (MST) that runs in time \(O(D + n^{0.614}) \). The chief tools employed in achieving this bound are fragments—connected subgraphs of limited diameter and a BFS tree that spans the entire network. The computation is part distributed and part central. Each fragment achieves a subgoal distributedly and independently in parallel. The results of the subgoals are “put together” centrally at the root of a BFS tree. The final results are broadcast over the entire network using pipelining. To get good performance, the number as well as the diameter of the fragments is controlled and the volume of the final broadcast is kept small.

Recently, the time bound to compute an MST has been improved to \(O(D + \sqrt{n} \log^*n) \) by employing a \(\sqrt{n} \) -dominating set [KP 95].

In this paper, the technique of dividing the computation into part distributed and part central (using fragments and BFS) is shown to be useful in other contexts. Let \(f(n) \) and \(g(n) \) be the distributed time complexities of computing a minimum spanning tree and a \(\sqrt{n} \) -dominating set, respectively. (Currently, \(f(n) = g(n) = O(\sqrt{n} \log^*n + D) \), where \(D \) is the diameter of the network.) The time complexities for finding a \(k \)-edge certificate and a \(k \)-vertex certificate are \(O(k(D + f(n))) \) and \(O(k(D + f(n) + g(n) + \sqrt{n})) \), respectively. This improves the previous best known bound of \(O(kn \log^4n) \). We also present a new algorithm for computing biconnected components. This algorithm is extremely simple and is suitable for implementation on various models of computation in addition to the distributed model. On a distributed network, it runs in \(O(D + g(n) + \sqrt{n}) \) time. This is the first sublinear-time distributed algorithm for biconnected components. There are two known distributed algorithms for biconnected components both of which take at least linear time [Hu 89, Ho 90]. Recently, an alternate algorithm for edge certificates has been proposed [EIR 95].

As in [GKP 93], the main focus here is the time complexity, and we ignore the communication costs. We note, however, that the communication complexity of the algorithms presented in this paper has been estimated to be \(O(k(m[D + n^{0.614}] + n^{1\frac{5}{3}})) \) in [JM 96].

The model of computation is a point-to-point communication network represented by an undirected graph \(G(V, E) \), where the set of vertices \(V \) stands for processors and the set of edges \(E \) stands for bidirectional communication channels. There is no shared memory and processors may
communicate only by transmitting messages. Typically, there are two complexity measures that are used to analyze distributed algorithms: the communication complexity and the time complexity. The communication complexity is the total number of elementary messages generated in the worst case during the execution of the algorithm where each elementary message consists of length $O(\log n)$ bits. The time complexity is the number of rounds in the worst case, where in each round, each processor may send out at most one elementary message per incident edge, receive all messages sent to it during that round from its neighbors, and carry out some local computation. As mentioned before, we will not try to minimize the number of messages generated. Therefore, for a slight overhead in communication complexity, we can employ a synchronizer and assume the computation to be synchronous.

The rest of the paper is organized as follows. The next section describes scan-first search and its relation to finding sparse certificates. Section 3 presents a distributed algorithm for edge and vertex certificates. An algorithm for finding biconnected components is presented in Section 4. Concluding remarks are given in Section 5.

2. SCAN-FIRST SEARCH

Scan-first search (SFS) was first introduced in [CKT 93]. It proved to be a useful tool in obtaining sparse certificates on the parallel model of computation. In this paper, we show that it is valuable on the distributed model as well.

A scan-first search in a connected undirected graph G starting from a specified vertex r is a systematic way of visiting the vertices of G. To scan a vertex is to visit all previously unvisited neighbors of that vertex. At the beginning of the search, only r is visited. Then, the search iteratively scans an already visited but unscanned vertex until all vertices are scanned.

For an undirected graph that is not connected, a scan-first search can be performed on each connected component by starting from an arbitrary vertex and applying the above procedure. The search produces a spanning forest which consists of a spanning tree for each connected component.

Notice that SFS is less restrictive than sequential BFS. In other words, all sequential BFS trees are SFS trees but some SFS trees are not BFS trees. For example, in any odd cycle of length n with a specified root r, there is only one BFS tree: the tree obtained by removing the edge at distance $(n - 1)/2$ from r. However, there are $n - 2$ SFS trees: the trees obtained by removing any edge except the two edges incident on r.

It turns out that scan-first search trees can be retrieved efficiently from the numbering given by [NI 92]. Their algorithm runs in linear time.
(compared to the complexity implied by doing \(k \) scan-first searches in sequence). But there does not seem to be an easy way to get an efficient distributed numbering algorithm.

The following result was proved in [CKT 93].

Theorem 1 (Cheriyan, Kao, Thurimella). Assume that the vertices of a connected graph \(G \) are labeled with preorder labels using an arbitrary tree rooted at \(r \). For each \(v, v \neq r \), let \(n(v) \) denote the neighbor of \(v \) with the smallest preorder number. Then, the subgraph formed by the edges \((v, n(v))\), for all \(v \neq r \), is an SFS spanning tree of \(G \).

The above theorem can be stated in a slightly more general form:

Theorem 2. Let \(G \) be a graph with \(c \) components. Add any \(c - 1 \) edges that make \(G \) connected and denote the resulting graph by \(G' \). Assume that the vertices are labeled using a preorder traversal of a spanning tree \(T \) of \(G' \). Consider a component \(C \) of \(G \). Let \(r_C \) be the vertex with smallest preorder label in \(C \). For each \(v \in V(C), v \neq r_C \), let \(n(v) \) be the neighbor of \(v \) in \(C \) with the smallest preorder label. Then, the subgraph formed by the edges \((v, n(v))\) is an SFS spanning tree of \(C \).

Proof. Denote the preorder that is used in the theorem by \(Z \). Consider another preorder \(Q \) on the vertices of \(C \) using the subtree of \(T \) restricted to \(C \) with \(r \), as the root. Now, apply the method of Theorem 1 on \(C \) using \(Q \). For any two vertices, \(w \) and \(x \) of \(C \), if \(x \) is visited after \(w \) in \(Q \), then \(x \) will be visited after \(w \) in \(Z \), possibly after visiting vertices of other components. In fact, \(\text{pre}(w) < \text{pre}(x) \) in \(Z \) if and only if \(\text{pre}(w) < \text{pre}(x) \) in \(Q \). That is, for each \(v, v \neq r_C \), the relative ordering of the neighbors of \(v \) in \(C \) is the same in \(Z \) and \(Q \). Therefore, for every vertex \(v, n(v) \) is the same regardless of whether \(Z \) or \(Q \) is used. \(\blacksquare \)

3. Sparse Certificates

A sparse certificate for \(k \)-edge connectivity can be computed as shown below.

Algorithm 1. *Edge Certificate.*

Input: \(k \)-edge connected \(G = (V, E) \).

Output: A sparse certificate \(C \).

1. Let \(G_0 \) be \(G \) with edge weights equal to 0.
2. **For** \(j \leftarrow 1, \ldots, k \) **do**
 1. Find an MST \(T \) in \(G_{j-1} \).
 2. If the weight of an edge is 0 in \(G_{j-1} \) and if it belongs to \(T \), then change it to 1 and call the new graph \(G_j \).
3. \(C_k \), the sparse certificate for \(k \)-edge connectivity, is the subgraph of \(G \) consisting of edges whose weight is 1.

End

Lemma 1. Let \(H \) be a subgraph of \(G \). Let \(G_w \) be a weighted version obtained from \(G \) by assigning weight one (resp. zero) to the edges of \(H \) (resp. \(G - H \)). Then, the zero weight edges of an MST of \(G_w \) constitute a maximal spanning forest of \(G - H \).

Proof. Denote the MST by \(T \) and its subgraph of zero weight edges by \(F \). Clearly, \(F \) has no cycles and \(E(F) \subseteq E(G - H) \). If \(F \) is not maximal, then there exists an edge \(e \) of weight 0 in \(G - H \) whose addition to \(F \) will not create a cycle. But adding \(e \) to \(T \) will create a cycle. Therefore, this cycle must have an edge \(f \) whose weight is 1. That is, we can trade \(e \) for \(f \) and keep \(T \) connected. The total weight of this new spanning tree is one less than that of \(T \), contradicting that \(T \) is an MST.

Theorem 3. The distributed time complexity of the above algorithm is \(O(k(D + f(n))) \), where \(f(n) \) is the distributed time complexity of computing an MST. The above algorithm is correct.

Proof. The time complexity is trivial. The sequential algorithm proposed by [T 89] for edge certificates is similar to the above algorithm with the following difference. The definition of \(G_i \) is \((G_{i-1} - T) \), where \(T \) is a maximal spanning forest in \(G_{i-1} \). By Lemma 1, finding a maximal spanning forest in \(G - (\text{the edges of current certificate}) \) is equivalent to finding the zero-weighted edges of an MST in an appropriately weighted version of the graph. This proves the correctness.

Now consider finding a certificate for \(k \)-vertex connectivity. To preserve vertex connectivity, it is not enough to take any spanning forest in \(G_{i-1} \). However, taking an SFS spanning forest will suffice, as shown in [CKT 93]. Actually, any BFS tree is an SFS tree. However, finding BFS trees in subgraphs in sublinear time seems to be difficult. Instead, we show how to compute preorder numbers of a tree, thus enabling us to convert an arbitrary tree into an SFS one as pointed out in Theorem 2.

Algorithm 2. *Vertex Certificate.*

Input: A \(k \)-vertex connected \(G = (V, E) \).

Output: A sparse certificate \(C \).

1. Let \(G_0 \) be \(G \) with edge weights equal to 0.
2. For \(j \leftarrow 1, \ldots, k \) do
 a. Find an MST \(T \) in \(G_{j-1} \). Denote the zero-weighted subgraph of \(T \) by \(F \). (\(F \) is a maximal spanning forest in the zero-weighted subgraph of \(G \) by Lemma 1.)
(b) Preorder label the vertices of G using T. Convert F into an SFS spanning forest F' by the method described in Theorem 2. If the weight of an edge is 0 in G_{i-1} and if it belongs to F', then change it to 1 and call the new graph G_i.

3. C_k, the sparse certificate for k-vertex connectivity, is the subgraph of G consisting of edges whose weight is 1.

End

In the rest of this section, we show how to fold the preorder computation into the algorithm for an MST.

Lemma 2. [GKP 93, KP 95]. A tree of n vertices can be divided into $O(\sqrt{n})$ connected subgraphs each of diameter $O(\sqrt{n})$ in $O(\sqrt{n} \log n)$ time.

Proof. Follows from Lemma 2.6 of [GKP 93], Theorem 3.2 of [KP 95] and the fact that the input graph is unweighted. □

We will refer to each connected subgraph that is induced by a subset of vertices as a fragment F and denote its diameter by d.

The graph we will be interested in dividing into fragments is a rooted tree. By the center of a fragment, we mean the vertex of the fragment through which the rest of the vertices of the fragment are connected to the ancestors. We will make the center of each fragment r “responsible” for preorder labeling the vertices of the subtree that belongs to F. We will also assume that there is a rooted BFS tree T_b of the whole graph superimposed over the fragments to facilitate the computations that need to be performed centrally. Refer to Fig. 1a. Each fragment is shown in a circle. To keep the figures simple, the BFS tree T_b is not shown. The dashed edges, the edges connecting different fragments, will be referred to as inter-fragment edges, following the terminology of [GKP 93].

Algorithm 3. Distributed Preorder.

Input: A $G = (V, E)$, an MST T with edges directed away from the root $R(T)$, a BFS tree T_b with root $R(T_b)$, fragments F and their roots r.

Output: A preorder number $pre(v)$, for every v of T.

1. Compute size, the number of vertices, of each fragment F at r.
2. Collect size information at $R(T_b)$. For each inter-fragment edge $u \rightarrow v$ of T, compute centrally at $R(T_b)$, the size of the subtree of T rooted at v. Associate this size with $u \rightarrow v$. See Fig. 1b.
3. Broadcast these sizes over the entire network.
4. At each r, using the sizes associated with inter-fragment edges and assuming the $pre(r)$ to be 0, compute the preorder number P of all vertices of F. Also, compute the preorder number P of the roots of fragments adjacent to F. Associate the P values of roots with the
Fig. 1. Centers and fragments of a minimum spanning tree (MST).
inter-fragment edges going out of \mathcal{F}. (In Fig. 2a, the P values of roots are the first components of the closed intervals associated with the dashed edges.)

5. Send up the P labels of inter-fragment edges to $R(T_b)$. Compute centrally, the final preorder number for each r by summing the P labels of the inter-fragment edges from r to the root of the MST $R(T)$.

6. Broadcast the final preorder numbers of each r over the network.

7. Each r computes the preorder number for the vertices of \mathcal{F} by adding its own preorder number to P—the preorder number computed assuming $\text{pre}(r)$ to be 0 in Step 4.

End

Theorem 4. The distributed time complexity of the above algorithm is $O(D + g(n) + \sqrt{n})$ where $g(n)$ is the distributed time complexity of finding a \sqrt{n}-dominating set. The above algorithm is correct.

Proof. Assume T has been divided into N fragments, where the fragment with the highest diameter has diameter d. First, consider preparing the input for the algorithm, i.e., directing the tree edges away from the root $R(T)$. Start by directing the inter-fragment edges of the tree centrally at $R(T_b)$ and broadcast these directions over T_b. The computation is central and takes constant time. Broadcasting the direction of $N - 1$ edges can be done in $O(n)$ by pipelining. Each fragment now has exactly one incoming edge $u \rightarrow r$ except for one—the fragment containing RT which has zero incoming edges. We will refer to the head of this incoming edge as the *root* r of the fragment. (Assume the root r of the fragment containing $R(T)$ to be the root of MST $R(T)$.) The edges in different fragments are directed simultaneously in parallel. This can be done by a broadcast from r in $O(d)$ time.

Computing the size of a fragment \mathcal{F} at its root r can be done in time proportional to the diameter of \mathcal{F}. In fact, we can compute for each node, the size of the subtree attached to it within \mathcal{F} by starting with leaves and sending up the sizes to their ancestors. Each node, after receiving the sizes from all its children, adds them up and sends the total to its parent. After d rounds, the root r will have the size of its fragment.

Steps 3 and 6 are similar and can be done by pipelining in time $O(N + D)$.

Step 4 can be implemented to run in time $O(d)$ as follows. Assume at each node v, we have the size of the subtree rooted at v and the sizes of the subtrees rooted at the children of v. Compute centrally at v, the prefix sums of the subtrees rooted at the children of v. Once $\text{pre}(v)$ is known, add the $(i-1)$th prefix sum to $\text{pre}(v) + 1$ and send it to the ith child. The value received from the parent at a node is the preorder number of that
Fig. 2. Distributed preorder computation.
node. The whole computation is initiated at \(r \) by setting \(\text{pre}(r) = 0 \). Similarly, Step 7 can be implemented by doing a broadcast of \(\text{pre}(r) \) from \(r \) which takes time \(O(d) \).

Finally, consider Step 5. Sending up the \(P \) labels takes time \(O(N + d) \). Once these values are available, the rest of the computation is local and takes constant time.

The distributed time complexity of the above steps, and that of the entire algorithm is \(O(N + d + D) \). Setting \(N \) and \(d \) to \(O(\sqrt{n}) \) implies the time bound by Lemma 2.

The correctness can be seen from the following observations. Notice that if \(y \) is descendant of \(x \), then \(\text{pre}(y) \in [\text{pre}(x), \text{pre}(x) + \text{size}(x) - 1] \). If \(x \) is a tree vertex with \(x_1, x_2, \ldots \) as its children in some order, then one possible preordering of the children of \(x \) after labeling \(x \) is \(\text{pre}(x_i) = \text{pre}(x) + 1 + \sum_{j=1}^{i-1} \text{size}(x_j) \). Consider an inter-fragment edge \(u \rightarrow v \). Let \(u \) and \(v \) belong to \(F \) and \(F' \), respectively. Let \([x, y] \) be the interval associated with \(u \rightarrow v \). Then, there are \(x \) vertices of \(F \) that occur before \(v \) in the preorder of \(T \). Now, consider an \(r \), the center of a fragment, and the tree path from \(r \) to \(R(T) \)—the root of the MST \(T \). Let \([x_1, y_1], [x_2, y_2], \ldots, [x_k, y_k] \) be the intervals associated with the inter-fragment edges encountered on this path. Clearly, the number of vertices of \(T \) that occur before \(r \) in the preorder of \(T \), and hence \(\text{pre}(v) \), is equal to \(x_1 + x_2 + \cdots + x_k \).

4. **BICONNECTIVITY**

We first present an algorithm to identify biconnected components that is significantly simpler than many existing algorithms. We then describe its implementation on a distributed network.

The distributed algorithm of Huang [Huang 89] is based on the parallel algorithm proposed by Tarjan and Vishkin [TV 84]. The main idea behind both these algorithms is to reduce the problem of computing blocks to that of computing connected components. The algorithm of Tarjan and Vishkin constructs an auxiliary graph whose connected components correspond to the blocks of the original graph. In contrast, Huang’s algorithm avoids building this auxiliary graph but constructs a graph that is a locally modified subgraph of the original graph. In this paper, we show that blocks can be retrieved from the connected components of a subgraph. Thus our algorithm builds neither an auxiliary graph nor a locally modified subgraph.

To identify the subgraph from which blocks can be retrieved, the following definitions are needed. Let \(T \) be a rooted spanning tree with root \(r \). Denote the parent of \(u \) in \(T \) by \(\rho(u) \). Assume each vertex \(v \) has been identified with a preorder number \(\text{pre}(v) \), and \(\text{size}(v) \)—the number
of vertices in the subtree of T rooted at v. For each v, let $\text{high}(v)$ (resp. $\text{low}(v)$) denote the vertex with the highest (resp. lowest) preorder number that is either a descendant of v or adjacent to a descendant of v by a nontree edge. Figure 4 shows a BFS tree with labels.

For an articulation point x, $x \neq r$, classify (x, y)—an edge incident on x—as a back edge if y is in the same connected component as $p(x)$ in $G - \{x\}$; otherwise, it is a forward edge. Define all edges incident on r to be forward edges whether or not r is an articulation point. Figure 3 illustrates these definitions.

Our algorithm finds connected components of the subgraph obtained by deleting all forward edges from G. If two edges are in the same connected component in this subgraph, then clearly they are in the same block in G. Thus, all edges that are not forward edges can be labeled easily with block labels. To label forward edges, we take advantage of the inherent “tree” structure by which blocks are connected. To keep the algorithm simple, we ensure that all forward edges are tree edges by picking T to be a BFS tree. Finally, forward edges are identified using the pre, high, low, and size values of its end points.

Algorithm 4. Biconnected Components.

Input: A $G = (V, E)$, a rooted BFS tree T with root $R(T)$, $\text{pre}(v)$, $\text{size}(v)$, $\text{low}(v)$, and $\text{high}(v)$.

Fig. 3. Forward (bold) edges and back (dotted) edges.
Output: A label $\beta(u, v)$ for each edge (u, v). Two edges get the same β label iff they are in the same block.

1. Identify a subgraph H of a G whose connected components are useful in finding biconnected components of G and represent it by associating a weight of 0 with its edges:

 a) Assign a weight of 0 to all edges in E.

 b) For an edge (u, v) of T, where $u = p(v)$, if $\text{pre}(u) \leq \text{low}(v)$ and $\text{high}(v) < \text{pre}(u) + \text{size}(u)$, change the weight of (u, v) to 1.

2. For every connected component C of H, label every $v \in V(C)$ with $l(v) = \min(\text{pre}(u) \mid u \in V(C))$.
3. Find the biconnected component labels for all edges in E: For every edge (u, v), $\beta(u, v)$ is the maximum of $l(u)$ and $l(v)$.

End

See Fig. 5 for an illustration of the algorithm.

Lemma 3. Let B_i, $1 \leq i \leq k$, be the blocks of G. Let u_i be the vertex with the smallest preorder label in B_i. Then, for all i, $1 \leq i \leq k$, an edge of B_i belongs to H if and only if that edge is not incident on u_i. In other words, $H = G - \{\text{forward edges}\}$.

Proof. Consider a B_i and corresponding u_i. If $u_i = r$, then clearly all edges incident on r pass the test in Step 1(b) and hence do not belong to H. Let $u_i \neq r$. We claim that none of the children of u_i that belong to B_i have descendants that are adjacent to a nondescendant of u_i. Assume not. Then, there is a child x of u_i and y a descendant of x that is adjacent to a nondescendant z of u_i. That is, including (y, z) in T creates a cycle that includes the edges $(p(u_i), u_i)$ and (u_i, x). Hence $(p(u_i), u_i)$ belongs to B_i. Then, the smallest preorder label in B_i is less than or equal to $pre(p(u_i))$ which is strictly less than $pre(u_i)$, contradicting that u_i is the vertex with the smallest preorder label in B_i. Given the claim, it is easy to see that the children of u_i that belong to B_i must have their low and high values in the closed interval $[pre(u_i), pre(u_i) + \text{size}(u_i) - 1]$. Now observe that since T is a BFS tree and u_i is visited before any other vertices of B_i, all vertices of B_i incident on u_i become children of u_i in T when u_i is scanned. In other words, if (u_i, v) is an edge of B_i, then it belongs to T and $pre(u_i) \leq \text{low}(v)$ and $\text{high}(v) < pre(u_i) + \text{size}(u_i)$. Therefore, (u_i, v) does not belong to H.

Next, we show that if an edge (a, b) is not incident on u_i, for some i, then it belongs to H. Assume not. Clearly, (a, b) must come from T as only tree edges undergo a change in their weights (see Step 1(b)). Let (a, b) belong to B_j without loss of generality and that a is the parent of b. If a is an articulation point that separates $(p(a), a)$ from the edges of B_j, then a must have the smallest preorder label in B_j as it is the only entry point into B_j from $p(a)$. That is, $a = u_j$. Since we assumed (a, b) is an edge that is not incident on u_j, for any i, a cannot be an articulation point that separates $(p(a), a)$ and from the edges of B_i. That is, $(p(a), a)$ and (a, b) are in the same block. Hence there is a simple cycle containing them. This cycle contains an edge that connects a descendant of b to a nondescendant of a. Therefore, either $\text{low}(b) < \text{pre}(a)$ or $\text{high}(b) \geq \text{pre}(a) + \text{size}(a)$.

Corollary 1. Assume that two edges (a, b) and (c, d) belong to two different blocks in G and that $a \neq d$. Then, a and d belong to different components in H.
Fig. 5. Running Algorithm \textit{Biconnected components} on the graph from Fig. 4: (a) the subgraph H; (b) the f labels for vertices; (c) the block labels for the edges.
Proof. Let \((a, b)\) and \((c, d)\) belong to \(B_i\) and \(B_j\). Since \((a, b)\) and \((c, d)\) belong to different blocks, there exists a vertex \(u\) in \(B_i\), an articulation point, that is present on every path between \(a\) and \(d\). Assume, without loss of generality, that a vertex of \(B_j\) is visited during the preorder before any of the vertices of \(B_i - \{u\}\). In that case, \(u\) must be the vertex with the smallest preorder label in \(B_i\). By the previous lemma, all edges of \(B_{ij}\) incident on \(u\) are absent in \(H\). Therefore, there is no path between \(a\) and \(d\) in \(H\).

Theorem 5. Algorithm 4 is correct.

Proof. To prove that all edges of a block get the same label, consider a block \(B\) of \(G\) with more than one edge. Let \(u\) and \(v\) be the vertices of \(B\) with the smallest preorder labels. By Lemma 3, \(H\) contains all edges of \(B\) except the ones incident on \(u\). Now, consider any two vertices \(a\) and \(b\) of \(B\) different from \(u\). As \(B\) is biconnected, there are at least two vertex-disjoint paths between \(a\) and \(b\) in \(G\). At most one of them contains \(u\). Since the only edges of \(B\) that are missing in \(H\) are the ones incident on \(u\), \(a\) and \(b\) are connected in \(H\). That is, all vertices of \(B\) except \(u\) are in the
same connected component in H. From Corollary 1, we know that if two vertices are in the same connected component in H, then there is a block in G that contains both those vertices. Therefore, all vertices of B except u get the same l label which, by Step 2, is $pre(l)$. The β label for all edges (x, y) of B not incident on u would be $\max(l(x), l(y)) = \max(pre(l(x)), pre(l(y))) = pre(l(x))$. The edges of B that are incident on u are labeled with a β label equal to $\max(l(u), pre(l))$. Since $l(u) \leq pre(l(u))$, this is simply $pre(l(u))$. Therefore, all edges of B get labeled with the same β label which is equal to $pre(l(u))$.

Next we will prove that if two edges get the same label, then they are in the same block in G. Assume not. Consider two edges a, b and c, d, $a \neq d$, that belong to different blocks B_i and B_j in G but which get the same β label. Since a and d are in different components in H by Corollary 1, $l(a) \neq l(d)$ by Step 2. Consequently, by Step 3, it is not possible that $l(a) \geq l(b)$ and $l(c) \leq l(d)$. There are three other cases.

1. $l(a) \leq l(b)$ and $l(c) > l(d)$. Then, $\beta(a, b) = \beta(c, d) = l(a) = l(c)$. In other words, a and c are in the same connected component in H. As a and d are in different components in H, c must be an articulation point in G. Since $l(c) > l(d)$, the vertices d and c are visited before the vertices of $B_i - \{c\}$ during the preorder traversal. Then, c must be vertex with the smallest preorder label in B_i. But then c and a must be in different components in H by Lemma 3, contradicting that $l(a) = l(c)$.

2. $l(a) < l(b)$ and $l(c) \leq l(d)$. Similar to the previous case.

3. $l(a) < l(b)$ and $l(c) > l(d)$. Then, $\beta(a, b) = \beta(c, d) = l(b) = l(c)$. In other words, b and c are in the same connected component in H. Since $l(a) < l(b)$, a and b are in different components in H. If $pre(a) < pre(d)$, then c is visited before any vertex from $B_i - \{c\}$ contradicting that $l(c) > l(d)$. The possibility $pre(a) > pre(d)$ can be ruled out similarly.

Therefore, two edges (a, b) and (c, d) are in the same block if and only if (a, b) and (c, d) get assigned the same β label.

Consider implementing Algorithm 4 in a distributed environment so that it runs in sublinear time. Section 3 shows implementation for $pre(l)$ and $size(l)$. The same distributed time can also be achieved for $high(l)$ as follows. In a given round, each node computes the maximum of its preorder number, preorder number of its neighbors, and the values received, if any, from its children. This computed value is passed up to the parent, if one exists, in the next round. By D rounds, each node v would have its $high(l)$ value. Computation of $low(l)$ is similar. That only leaves the computation of connected components—Step 2. It is shown below that by employing techniques that were used to do distributed preorder, we can achieve sublinear time for this as well.

Algorithm 5. Distributed Connected Components.

Input: A graph $G = (V, E)$ with a subgraph H whose edges are marked with a weight of 1. The edges not belonging to H have a weight of 0. A BFS tree T_b.

Output: A label $l(u)$ for each vertex u. Two vertices get the same label iff they are in the same connected component in H.

1. Divide G into fragments F and find a rooted MST T of G with root $R(T)$. Label each vertex v of T with a preorder label $pre(v)$. Designate the root r of each fragment F to be the vertex of F with the smallest pre value.

2. Compute the connected components of H restricted to each fragment by finding a label $l_f(v)$ for each vertex v of F.

3. For each v, compute $l(v)$ using $l_f(v)$.

 (a) For each inter-fragment edge (u, v) of T, send the weight of the edge, $l_f(u)$ and $l_f(v)$ to $R(T)$—the root of T.

 (b) At $R(T_b)$ build a graph J whose vertices are vertices of T that have an inter-fragment edge (either incoming or outgoing) incident on them. Add an edge between u and v in J if either u and v are in the same fragment and $l_f(u) = l_f(v)$, or u and v are in different fragments but are connected by an edge of weight 0.

 (c) Compute the connected components of J and label each component with the smallest l_f label that belongs to that component. These labels are the l labels for all vertices incident on inter-fragment edges.

 (d) Extend l labels to all the vertices of G: Broadcast down $l(r)$ within each fragment along the zero-weighted tree edges from the root r. If a node u receives a label during this broadcast, $l(u)$ is the value received; otherwise $l(u)$ is $l_f(u)$ computed in Step 2 above.

End

Theorem 6. The distributed time complexity of the above algorithm is $O(D + f(n) + g(n) + \sqrt{n})$ where $f(n)$ and $g(n)$ are the distributed time complexities of finding an MST and a \sqrt{n}-dominating set, respectively. The above algorithm is correct.

Proof. Recall that D, N, and d represent, respectively, the diameter of G, the number of fragments, and the diameter of the deepest fragment. It follows from [GKP 93, KP 95] and Theorem 4 that Step 1 takes $O(D + g(n) + \sqrt{n})$ time by setting N and d to $O(\sqrt{n})$. Step 2 can be implemented to run in $O(d)$ time as follows. Find the minimum of $pre_f(v)$ and the preorder numbers received, if any, from its children. If the edge connect-
ing v to its parent (in T) belongs to F and has weight 0, then send this value up. Otherwise, denote it $l_{F}(v)$. Next, send this value down to all the children of v in F that are connected by zero-weighted edges. For a node u that has the parent in F connected by an edge of weight 0, $l_{F}(u)$ is the value u receives from its parent. Consider Step 3. Part (a) takes $O(N + D)$ time. Parts (b) and (c) are computed centrally and take constant time. Part (d) takes at most $O(d)$ time. That establishes the time bound. The correctness can be seen from the following facts. The connected component computation is performed hierarchically. That is, first components within each fragments are labeled, and then the labeling is extended to the whole graph. The connected components of H and that of the subgraph of zero-weighted edges of T are identical by Lemma 1. In other words, for any two vertices u and v, u and v are in the same connected component in H if and only if there is a path of zero-weighted edges connecting u and v in T.

We conclude by noting that even though the algorithms presented in this section make use of a BFS tree, an SFS tree is sufficient in its place.

5. CONCLUSION

We presented sublinear time algorithms for finding sparse certificates and biconnected components. The reduction in time was achieved using the paradigm introduced by [GKP 93]. We demonstrated that this methodology of dividing a problem into subtasks, solving them in parallel and combining the results centrally at the root of a BFS tree is useful in contexts other than MST computation. It would be nice to see more applications of this technique.

If certificate algorithms are to be implemented, we suggest that the presented algorithms be modified so that the first spanning tree is a BFS tree (instead of an SFS tree). This way one can preserve not only connectivity but also the diameter of the original graph.

REFERENCES

Mathematical Systems Theory.

pp. 659–668.

[Ha 87] V. Hadzilacos, Connectivity requirements for Byzantine agreement under re-

[Ho 90] W. Hohberg, How to find biconnected components in distributed networks, J.

[Hu 89] S. T. Huang, A new distributed algorithm for the bioconnectivity problem, in

[IR 88] A. Itai and M. Rodeh, The multi-tree approach to reliability in distributed

[JM 96] E. Jennings and L. Motyckova, Message and time efficient distributed algorithms
for sparse k-connectivity certificates, in “Proc. 15th Ann. ACM Symp. on Princi-

[KP 95] S. Kutten and D. Peleg, Fast distributed construction of k-dominating sets and
applications, in “Proc. of 14th Ann. ACM Symp. on Principles of Distributed

[NI 92] H. Nagamochi and T. Ibaraki, Linear time algorithms for finding k-edge-
connected and k-node-connected spanning subgraphs, Algorithmica 7 (1992),
583–596.
